TOP特許意匠商標
特許ウォッチ Twitter
公開番号2024175931
公報種別公開特許公報(A)
公開日2024-12-19
出願番号2023094036
出願日2023-06-07
発明の名称低炭素高炉製鉄のためのクリーンな還元ガスの製造方法
出願人国立大学法人 東京大学
代理人個人,個人,個人,個人,個人,個人,個人,個人,個人,個人,個人,個人,個人,個人,個人
主分類C01B 32/40 20170101AFI20241212BHJP(無機化学)
要約【解決課題】
高炉製鉄プロセスで活用される新たな脱炭素技術を開発すること。
【解決手段】
高炉での製鉄に用いられる還元性ガスを製造する方法であって、
(1)還元鉄及び二酸化炭素を、酸化剤反応器に供給する工程、及び
(2)前記酸化剤反応器中で、高温で、前記還元鉄を二酸化炭素で酸化して、一酸化炭素富化な還元性ガスを生成する工程、
を含む、当該製造方法。
特許請求の範囲【請求項1】
高炉での製鉄に用いられる還元性ガスを製造する方法であって、
(1)還元鉄及び二酸化炭素を、酸化剤反応器に供給する工程、及び
(2)前記酸化剤反応器中で、高温で、前記還元鉄を二酸化炭素で酸化して、一酸化炭素富化な還元性ガスを生成する工程、
を含む、当該製造方法。
続きを表示(約 880 文字)【請求項2】
(3)前記酸化剤反応器で生成した部分酸化された還元鉄を空気反応器に送る工程、及び
(4)前記空気反応器中で、前記部分酸化された還元鉄を、空気によって完全に酸化する工程、
を更に含む、請求項1に記載の製造方法。
【請求項3】
完全に酸化された還元鉄を回収する工程を含む、請求項2に記載の製造方法。
【請求項4】
前記二酸化炭素が、濃縮二酸化炭素である、請求項1に記載の製造方法。
【請求項5】
前記二酸化炭素は、製鉄工場の任意のプロセスから分離回収された二酸化炭素、または、生物起源の二酸化炭素である、請求項4に記載の製造方法。
【請求項6】
前記還元鉄は、直接還元鉄(DRI)及び/又はホットブリケット鉄(HBI)である、請求項1に記載の製造方法。
【請求項7】
前記完全に酸化された還元鉄が、高炉に充填される酸化鉄として、又は、高炉に充填される前に焼結される酸化鉄として、再利用される、請求項2に記載の製造方法。
【請求項8】
請求項1~7のいずれか1項に記載の製造方法により得られる還元性ガスを、高炉内に吹き込むことを特徴とする、高炉での銑鉄の製造方法。
【請求項9】
高炉で銑鉄を製造する方法であって、
(a)還元鉄及び二酸化炭素を、酸化剤反応器に供給する工程、
(b)前記反応器中で、高温で、前記還元鉄を二酸化炭素で酸化して、一酸化炭素富化な還元性ガスを生成する工程、
(c)(b)の工程で得られた前記還元性ガスを、高炉内に供給する工程
を含む、当該製造方法。
【請求項10】
(d)(b)の工程において酸化剤反応器で生成した部分酸化された還元鉄を空気反応器に送る工程、及び
(e)前記空気反応器中で、前記部分酸化された還元鉄を、空気によって完全に酸化する工程、
を更に含む、請求項9に記載の製造方法。
(【請求項11】以降は省略されています)

発明の詳細な説明【技術分野】
【0001】
本発明は、高炉での製鉄に用いられる還元性ガスを製造する方法に関わる。また、本発明は、当該製造方法で得られる還元性ガスを用いた高炉で銑鉄を製造する方法に関わる。
続きを表示(約 3,100 文字)【背景技術】
【0002】
近年、地球環境問題や化石燃料枯渇問題を背景として、様々な分野において省エネルギー化並びに二酸化炭素(CO

)の排出量低減が強く求められている。特に、日本の全産業排出量の約40%は鉄鋼業に由来する。
一方で、鉄鋼生産の需要は世界中で増加を続けており、高炉製鉄プロセスは、依然として溶銑を生産する最も効果的かつ効率的な手法である。
【0003】
したがって、2030年までに温室効果ガスの排出量を2013年度比で30%以上削減し、2050年までにカーボンニュートラルを達成するためには、製鉄業のCO

排出量の70%以上を占める高炉製鉄プロセスの脱炭素化技術の提案・開発が急務である。
【0004】
これまで、高炉での炭素消費(コークスや微粉炭)を低減するために、様々な脱炭素技術が提案・開発されてきた。例えば、(1)直接還元鉄(DRI)/ホットブリケット鉄(HBI)を高炉に直接投入する(非特許文献1及び2);(2)高炉へ水素リッチガス(COG)を注入する技術(特許文献1及び非特許文献3);及び(3)トップガスリサイクル(TGR)高炉技術は(特許文献2及び非特許文献4)、現在開発中の3つの主要な脱炭素技術である。しかしながら、上記の技術にはそれぞれ運転上の制約があり、高炉製鉄プロセスの運転条件を複雑かつ困難なものとする。特に、上記の技術に頼るだけでは、CO

排出削減の可能性は非常に限られている(約20-25%)。
【先行技術文献】
【特許文献】
【0005】
EP2719777A1
米国特許第10106863
【非特許文献】
【0006】
宇治澤 優, 砂原 公平, 松倉 良徳, 中野 薫, 山本 高郁「HBl利用による高炉増産効果の検討」、鉄と鋼、Vol.92(2016)No.10
A. Griesser and Th. Buergler Berg Huettenmaenn Monatsh (2019) Vol. 164 (7): 267-273
Kenichi HIGUCHI, Shinroku MATSUZAKI, Koji SAITO and Seiji NOMURA, Improvement in Reduction Behavior of Sintered Ores in a Blast Furnace through Injection of Reformed Coke Oven Gas. ISIJ International, Vol. 60 (2020), No. 10, pp. 2218-2227
Wei Zhang, Juhua Zhang, Zhengliang Xue, Exergy analyses of the oxygen blast furnace with top gas recycling process. Energy 121, 15, Pages 135-146
【発明の開示】
【発明が解決しようとする課題】
【0007】
本発明は、高炉製鉄プロセスで活用される新たな脱炭素技術を開発することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、高炉の大規模な改修を行わずにCO

排出量を最大限削減できないかを鋭意検討したところ、化学ループプロセスの原料として還元鉄を利用することによってクリーンな還元ガス (COベース) を得ることができることを着想し、高炉製鉄からの銑鉄生産のための革新的な低炭素プロセスを提供できることを見出し、本発明を完成した。
【0009】
即ち、本発明は、以下の構成を有するものでさる。
[1]高炉での製鉄に用いられる還元性ガスを製造する方法であって、
(1)還元鉄及び二酸化炭素を、酸化剤反応器に供給する工程、及び
(2)前記酸化剤反応器中で、高温で、前記還元鉄を二酸化炭素で酸化して、一酸化炭素富化な還元性ガスを生成する工程、
を含む、当該製造方法。
[2](3)前記酸化剤反応器で生成した部分酸化された還元鉄を空気反応器に送る工程、及び
(4)前記空気反応器中で、前記部分酸化された還元鉄を、空気によって完全に酸化する工程、
を更に含む、[1]に記載の製造方法。
[3]完全に酸化された還元鉄を回収する工程を含む、[2]に記載の製造方法。
[4]前記二酸化炭素が、濃縮二酸化炭素である、[1]~[3]のいずれか1項に記載の製造方法。
[5]前記二酸化炭素は、製鉄工場の任意のプロセスから分離回収された二酸化炭素、または、生物起源の二酸化炭素である、[1]~[4]のいずれか1項に記載の製造方法。
[6]前記還元鉄は、直接還元鉄(DRI)及び/又はホットブリケット鉄(HBI)である、[1]~[5]のいずれか1項に記載の製造方法。
[7]前記完全に酸化された還元鉄が、高炉に充填される酸化鉄として、又は、高炉に充填される前に焼結される酸化鉄として、再利用される、[2]~[6]のいずれか1項に記載の製造方法。
[8][1]~[7]のいずれか1項に記載の製造方法により得られる還元性ガスを、高炉内に吹き込むことを特徴とする、高炉での銑鉄の製造方法。
[9]高炉で銑鉄を製造する方法であって、
(a)還元鉄及び二酸化炭素を、酸化剤反応器に供給する工程、
(b)前記反応器中で、高温で、前記還元鉄を二酸化炭素で酸化して、一酸化炭素富化な還元性ガスを生成する工程、
(c)(b)の工程で得られた前記還元性ガスを、高炉内に供給する工程
を含む、当該製造方法。
[10](d)(b)の工程において酸化剤反応器で生成した部分酸化された還元鉄を空気反応器に送る工程、及び
(e)前記空気反応器中で、前記部分酸化された還元鉄を、空気によって完全に酸化する工程、
を更に含む、[9]に記載の製造方法。
[11]完全に酸化された還元鉄を回収する工程を含む、[10]に記載の製造方法。
[12]前記二酸化炭素は、製鉄工場の任意のプロセスから回収された二酸化炭素、または、生物起源の二酸化炭素である、[9]~[11]のいずれか1項に記載の製造方法。
[13]前記還元鉄は、直接還元鉄(DRI)及び/又はホットブリケット鉄(HBI)である、[9]~[12]のいずれか1項に記載の製造方法。
[14]前記完全に酸化された還元鉄が、高炉に充填される酸化鉄として、又は、高炉に充填される前に焼結される酸化鉄として、再利用される、[10]~[13]に記載の製造方法。
【発明の効果】
【0010】
本発明により、高炉の大規模な改修を行わずに、炭素の使用量を35%以上節約することができる。このように、本発明は、従来の高炉製鉄法に比べて、コークス及び微粉炭の消費量を大幅に削減することができるため、CO

排出量を顕著に削減することができる。
【図面の簡単な説明】
(【0011】以降は省略されています)

この特許をJ-PlatPatで参照する

関連特許

デンカ株式会社
無機質粉末
27日前
株式会社タクマ
アンモニア改質燃焼システム
28日前
燐化学工業株式会社
精製リン酸およびその製造方法
1日前
大陽日酸株式会社
窒素ガス精製装置
21日前
株式会社トクヤマ
シリカ粉末、樹脂組成物、及び基板。
22日前
株式会社合同資源
ヨウ化水素ガスの製造方法
5日前
吉澤石灰工業株式会社
吸湿剤及び吸湿剤の製造方法
15日前
ダイハツ工業株式会社
水素製造装置
21日前
DIC株式会社
モリブデン化合物の回収方法
今日
任彩國際股ふん有限公司
遠赤外線放射材料及びその製造方法
27日前
株式会社豊田中央研究所
水素貯蔵システム
15日前
太平洋セメント株式会社
無機酸化物中空粒子
5日前
株式会社豊田中央研究所
水素貯蔵システム
15日前
株式会社豊田中央研究所
水素貯蔵システム
15日前
株式会社アストム
炭酸ナトリウムの製造方法
1日前
出光興産株式会社
ハロゲン化リチウムの製造方法
29日前
東亞合成株式会社
水酸化カリウムの製造方法
15日前
星和電機株式会社
多孔質炭素材料およびその製造方法
1日前
イビデン株式会社
高純度炭化ケイ素粉末の製造方法
1日前
日本メディア株式会社
水素ガスの製造方法及び製造装置
14日前
テイカ株式会社
リサイクル酸化チタンの製造方法
27日前
日本ゼオン株式会社
カーボンナノチューブ分散液およびその製造方法
27日前
三菱重工業株式会社
水素供給設備の操作方法、及び、水素供給設備
14日前
信越化学工業株式会社
希土類複合酸化物粒子の製造方法
1か月前
学校法人福岡工業大学
無機ナノシート複合体、及び無機ナノシート複合体の製造方法
12日前
住友化学株式会社
リサイクル正極活物質の製造方法
19日前
住友化学株式会社
リサイクル正極活物質の製造方法
19日前
日産化学株式会社
アルコール分散大粒子シリカゾル及びその製造方法
7日前
東レ株式会社
粒子表面が不燃材料でコーティングされた過硫酸塩粒子組成物、およびその製造方法
5日前
トヨタ自動車株式会社
P2型Na含有酸化物の製造方法
27日前
国立大学法人徳島大学
ゼオライトの製造方法
28日前
日本特殊陶業株式会社
アンモニアの合成装置
26日前
日本特殊陶業株式会社
アンモニアの合成装置
26日前
三菱マテリアル株式会社
硫化リチウム、および、硫化物固体電解質の製造方法
26日前
高純度シリコン株式会社
ポリシリコン還元炉、および、ポリシリコンの製造方法
今日
第一稀元素化学工業株式会社
酸化セリウム安定化ジルコニウム組成物
20日前
続きを見る