TOP
|
特許
|
意匠
|
商標
特許ウォッチ
Twitter
他の特許を見る
10個以上の画像は省略されています。
公開番号
2024180340
公報種別
公開特許公報(A)
公開日
2024-12-26
出願番号
2024095392
出願日
2024-06-12
発明の名称
排出の推定と異常
出願人
富士通株式会社
代理人
個人
,
個人
主分類
G06Q
10/04 20230101AFI20241219BHJP(計算;計数)
要約
【課題】排出を推定するコンピュータ実施方法、プログラム及び情報プログラミング機器を提供する。
【解決手段】方法は、第1期間の交通データを使用して交通予測プロセスを実行し、ターゲット地理的領域の第1交通予測を生成するステップ、第1期間の代わりに第2期間の交通データを使用して交通予測プロセスを実行してターゲット地理的領域の第2交通予測を生成するステップ、第1交通予測を第1周期的成分、第1傾向成分及び第1ノイズ成分に分解し、第2交通予測を第2成分に分解するステップ、第1ノイズ成分を第2ノイズ成分との間の少なくとも1つの偏差を異常閾値と比較して少なくとも1つの異常を検出するステップ及び第1交通予測に基づいてターゲット地理的領域の交通によって生成される排出を予測するステップを含む。予測するステップは、少なくとも1つの異常が検出された場合に少なくとも1つの検出された異常の排出への影響を予測する。
【選択図】図5
特許請求の範囲
【請求項1】
コンピュータ実施方法であって、
第1期間の交通データを使用して交通予測プロセスを実行して、ターゲット地理的領域の第1交通予測を生成するステップであって、前記交通予測プロセスは、
前記ターゲット地理的領域の及び前記第1期間の交通データに基づいて、前記ターゲット地理的領域の周期的交通予測を生成するステップと、
地理的地域の少なくとも1つの他の領域の及び前記第1期間の交通データに基づいて、前記少なくとも1つの他の地理的領域の少なくとも1つの他の周期的交通予測を生成するステップと、
前記ターゲット地理的領域の交通データ及び前記少なくとも1つの他の地理的領域の交通データに基づいて、前記ターゲット地理的領域の及び前記少なくとも1つの他の地理的領域のモビリティフローを分析して、前記ターゲット地理的領域と前記少なくとも1つの他の地理的領域との間の少なくとも1つの相関を決定するステップと、
前記少なくとも1つの他の周期的予測及び決定された前記少なくとも1つの相関に基づいて、前記ターゲット地理的領域の周期的予測を調整することによって、交通予測を生成するステップと、
を含む、ステップと、
前記第1期間の代わりに第2期間の交通データを使用して前記交通予測プロセスを実行して、ターゲット地理的領域の第2交通予測を生成するステップであって、前記第1期間は、前記第2期間及び前記第2期間よりも新しい追加期間を含む、ステップと、
前記第1交通予測を第1周期的成分、第1傾向成分、及び第1ノイズ成分に分解し、前記第2交通予測を第2周期的成分、第2傾向成分、及び第2ノイズ成分に分解するステップと、
前記第1交通予測の前記第1ノイズ成分を前記第2交通予測の前記第2ノイズ成分と比較して、少なくとも1つの異常を検出するステップであって、前記第1ノイズ成分と前記第2ノイズ成分との間の少なくとも1つの偏差を異常閾値と比較することを含む、ステップと
前記第1交通予測に基づいて、前記ターゲット地理的領域内の交通によって生成される排出を予測するステップであって、少なくとも1つの異常が検出されたときに、少なくとも1つの検出された前記異常の排出に対する影響を予測することを含む、ステップと、
を含むコンピュータ実施方法。
続きを表示(約 1,500 文字)
【請求項2】
前記交通データは、関連する前記地理的領域内のセンサから取得されたデータを含む、請求項1に記載のコンピュータ実施方法。
【請求項3】
前記交通データは、関連する前記地理的領域のデジタルツインから取得されたデータを含む、請求項1又は2に記載のコンピュータ実施方法。
【請求項4】
前記ターゲット地理的領域及び前記少なくとも1つの他の地理的領域は、都市部又は町又は市の各々の領域である、請求項1又は2に記載のコンピュータ実施方法。
【請求項5】
前記地理的領域の交通データが、
前記地理的領域内の車両の数、
前記地理的領域内の複数の種類の車両の各々の数、
前記地理的領域内の複数の車両の各々の位置、
前記地理的領域内の複数の車両の各々の進行方向、
前記地理的領域内の複数の車両の各々の速度、
前記地理的領域内の複数の車両の各々の平均速度、
前記地理的領域内の複数の車両の各々の最小及び/又は最大速度、
前記地理的領域内の混雑レベル、
前記地理的領域内の交通渋滞の数、
前記地理的領域内の道路ネットワークの使用レベル、
前記地理的領域内の最大輸送容量、
前記地理的領域内の複数の車両の各々の識別子、
のいずれかを含む、請求項1又は2に記載のコンピュータ実施方法。
【請求項6】
前記ターゲット地理的領域の周期的交通予測を生成するステップは、関連する前記交通データに基づいて、前記交通データの周期的側面を定義するリグレッサーを生成するステップを含む、請求項1又は2に記載のコンピュータ実施方法。
【請求項7】
前記ターゲット地理的領域及び複数の他の地理的領域のモビリティフローを分析して、前記ターゲット地理的領域の交通予測に関連する前記少なくとも1つの他の地理的領域を決定するステップを更に含む、請求項1又は2に記載のコンピュータ実施方法。
【請求項8】
前記交通データは、関連する前記地理的領域で発生するイベントに関する情報を含み、前記コンピュータ実施方法は、
前記ターゲット地理的領域の交通データを分析して、交通データと少なくとも1つのイベントとの間の少なくとも1つの相関を取得するステップ、
を更に含み、
前記少なくとも1つの他の周期的予測と決定された前記相関とに基づいて、前記ターゲット地理的領域の周期的予測を調整することにより、交通予測を生成するステップは、
交通データと少なくとも1つの外部イベントとの間の少なくとも1つの相関に基づき、及び予測された少なくとも1つのイベントとに基づき、前記ターゲット地理的領域の周期的予測を調整するステップを更に含む、請求項1又は2に記載のコンピュータ実施方法。
【請求項9】
前記第1交通予測を第1周期的成分、第1傾向成分、及び第1ノイズ成分に分解し、前記第2交通予測を第2周期的成分、第2傾向成分、及び第2ノイズ成分に分解するステップは、LOESSを用いた周期傾向分解(STL)技術を使用するステップを含む、請求項1又は2に記載のコンピュータ実施方法。
【請求項10】
前記第1ノイズ成分と前記第2ノイズ成分との間の少なくとも1つの偏差を異常閾値と比較するステップは、パーセント偏差を前記異常閾値と比較するステップを含む、請求項1又は2に記載のコンピュータ実施方法。
(【請求項11】以降は省略されています)
発明の詳細な説明
【技術分野】
【0001】
本発明は、排出の推定に関するものであり、特に、コンピュータ実施方法、コンピュータプログラム及び情報プログラミング機器に関する。
続きを表示(約 3,500 文字)
【背景技術】
【0002】
現実世界をデジタル世界として表現する傾向がある。スマートシティ、デジタルツイン(Digital Twin (DT))及びメタバースのような概念は、特に、データ、セキュリティ、モノのインターネット(Internet of Things (IoT))、電気通信のための第5世代技術標準(5G)、人工知能(AI)及び量子コンピューティングのような、これらの概念における新しいステップを可能にする新しい/改善された技術のために、少なくとも部分的に、より多くの注目を集めている。
【0003】
輸送モードからのCO2排出量、すなわち、人間の輸送活動の結果としての大気中への二酸化炭素の放出は、気候変動を促進する全体的な温室効果ガス排出に大きく寄与している。国際エネルギ機関によれば、輸送は、2019年に世界のエネルギ関連CO2排出の約24%を占めた。交通予測、現在及び過去の交通観測に基づいて、短期的又は短期的な将来における将来の交通状態を予測するプロセスは、輸送モードからのCO2排出を削減するために、交通を理解し、処理する上で重要である。通常5分から1時間の範囲の次の時間間隔における交通量の予測を含む短期交通フロー予測は、交通渋滞の分野における重要な研究課題の1つであり、過去20年間に多くの研究者によって取り組まれてきた(例えば、Kumar, S. V., Vanajakshi, L. Short-term traffic flow prediction using seasonal ARIMA model with limited input data. Eur. Transp. Res. Rev. 7, 21 (2015). https://doi.org/10.1007/s12544-015-0170-8)。
【0004】
以上を踏まえ、排出の推定の向上が望まれる。
【発明の概要】
【0005】
第1態様の実施形態によれば、コンピュータ実施方法であって、
第1期間の(履歴、historical)交通データを使用して交通予測プロセスを実行して、ターゲット地理的領域の第1交通予測を生成する(将来の期間の交通データを予測する)ステップであって、前記交通予測プロセスは、
前記ターゲット地理的領域の及び前記第1期間の交通データに基づいて、(ターゲット地理的領域及び第1期間の交通データの周期的成分を推定することによって)前記ターゲット地理的領域の周期的交通予測を生成する(将来の期間の交通データを予測する)ステップと、
前記地理的地域の少なくとも1つの他の領域の及び前記第1期間の交通データに基づいて、(少なくとも1つの他の地理的領域の交通データ及び第1期間の交通データの周期的成分を推定することにより)前記少なくとも1つの他の地理的領域の少なくとも1つの他の周期的交通予測を生成する(将来の期間の交通データを予測する)ステップと、
前記ターゲット地理的領域の交通データ及び前記少なくとも1つの他の地理的領域の交通データに基づいて、前記ターゲット地理的領域の及び前記少なくとも1つの他の地理的領域のモビリティフローを分析して、前記ターゲット地理的領域と前記少なくとも1つの他の地理的領域と(の交通データ(の傾向))の間の少なくとも1つの相関を決定するステップと、
前記少なくとも1つの他の周期的予測及び決定された前記少なくとも1つの相関に基づいて、前記ターゲット地理的領域の周期的予測を調整することによって、(第1)交通予測を生成するステップと、
を含む、ステップと、
前記第1期間の代わりに第2期間の(履歴)交通データを使用して前記交通予測プロセスを実行して、ターゲット地理的領域の第2交通予測を生成する(将来の期間の交通データを予測する)ステップであって、前記第1期間は、前記第2期間及び前記第2期間よりも新しい追加期間を含む、ステップと、
前記第1交通予測を第1周期的成分、第1傾向成分、及び第1ノイズ成分に分解し、前記第2交通予測を第2周期的成分、第2傾向成分、及び第2ノイズ成分に分解するステップと、
前記第1交通予測の前記第1ノイズ成分を前記第2交通予測の前記第2ノイズ成分と比較して、少なくとも1つの異常を検出するステップであって、前記第1ノイズ成分と前記第2ノイズ成分との間の少なくとも1つの偏差を異常閾値と比較すること(及び、前記偏差の大きさが前記異常閾値より大きい場合は、前記偏差を異常として分類すること)を含む、ステップと
前記第1交通予測に基づいて、前記ターゲット地理的領域内の交通によって生成される排出を予測するステップであって、少なくとも1つの異常が検出されたときに、少なくとも1つの検出された前記異常の排出に対する影響を予測することを含む、ステップと、
を含む、コンピュータ実施方法が提供される。
【0006】
任意の態様/実施形態に関連する特徴は、他の任意の態様/実施形態に適用することができる。
【図面の簡単な説明】
【0007】
例として、以下の添付の図面を参照する。
予測を理解するのに有用な図である。
システム及びアーキテクチャを示す図である。
システムを示す図である。
システムを示す図である。
方法を示す図である。
方法を示す図である。
モジュールを示す図である。
実施形態を理解するのに有用な図である。
モジュールを示す図である。
実施形態を理解するのに有用な図である。
実施形態を理解するのに有用な図である。
実施形態を理解するのに有用な図である。
モジュールを示す図である。
実施形態を理解するのに有用な図である。
実施形態を理解するのに有用な図である。
実施形態を理解するのに有用な図である。
予測を理解するのに有用な図である。
システム及びアーキテクチャを示す図である。
システムを示す図である。
システムを示す図である。
方法を示す図である。
モジュールを示す図である。
実施形態を理解するのに有用な図である。
実施形態を理解するのに有用なグラフを示す図である。
モジュールを示す図である。
機器を示す図である。
【発明を実施するための形態】
【0008】
本明細書に開示される態様は、排出、例えば、CO
2
排出を推定する問題、すなわち、過去、現在、及び将来の排出をどのように監視するかを処理することができる。態様は、排出の異常なピークを検出し、例えば、対策を適用することによって、ネットゼロ目標(Net Zero Targets (NZT))の達成を支援することができる。
【0009】
交通及び/又は排出を監視する従来の技術には、以下を含む欠点がある。
・従来のアプローチでは、遅延のない応答を必要とするリアルタイム環境のような高需要システムにおいて、周期的で粒度の低い予測は提供されない。
・従来の予測はコンテキストを考慮せず、複雑なパターン(例えば、相関する地域、市民の移動の流れ、将来の出来事など)も考慮しない。
・従来のアプローチでは、CO
2
異常はCO
2
レベルとして扱われるが、モビリティのコンポーネントとして詳細に分析されない。また、周期や傾向に依存しない側面も考慮されない。
【0010】
本明細書に開示された側面は、過去、現在、及び将来の排出を監視するための大きなスケーラビリティを可能にする。これらは、排出の異常なピークを検出し、例えば、非常に短い応答期間で多数の領域を同時に管理する必要があるデジタルツイン(digital twin (DT))ソリューションに対策を適用することによって、ネットゼロ目標(Net Zero Targets (NZT))の達成を支援することができる。
(【0011】以降は省略されています)
この特許をJ-PlatPatで参照する
関連特許
富士通株式会社
排出の推定と異常
1日前
富士通株式会社
排出の推定と異常
1日前
富士通株式会社
情報処理プログラム
10日前
富士通株式会社
光伝送装置及び光伝送方法
15日前
富士通株式会社
エラー訂正装置及びエラー訂正方法
16日前
富士通株式会社
機械学習プログラム、方法、及び装置
10日前
富士通株式会社
ラマン増幅装置およびラマン増幅方法
15日前
富士通株式会社
データ生成プログラム、方法、及び装置
10日前
富士通株式会社
情報処理方法および情報処理プログラム
15日前
富士通株式会社
制御プログラム、制御装置、及び制御方法
8日前
富士通株式会社
キャッシュコントローラ及び演算処理装置
9日前
富士通株式会社
車両販売支援システム、方法およびプログラム
2日前
富士通株式会社
プログラム、情報処理方法および情報処理装置
1日前
富士通株式会社
半導体装置、半導体装置の製造方法及び電子装置
10日前
富士通株式会社
シート搬送制御プログラムおよびシート搬送装置
1日前
富士通株式会社
特定プログラム、特定方法、および情報処理装置
8日前
富士通株式会社
半導体装置、半導体装置の製造方法及び電子装置
8日前
富士通株式会社
行動要因推定方法および行動要因推定プログラム
9日前
富士通株式会社
光送受信システム、光送受信方法、及び光送信装置
1日前
富士通株式会社
情報処理プログラム、情報処理方法及び情報処理装置
8日前
富士通株式会社
情報管理プログラム、情報管理方法及び情報管理装置
8日前
富士通株式会社
機械学習プログラム、機械学習方法及び機械学習装置
9日前
富士通株式会社
コンパイラ、コンパイル方法、およびコンパイル装置
10日前
富士通株式会社
パケット処理装置、パケット処理方法およびプログラム
15日前
富士通株式会社
機械学習方法、機械学習プログラムおよび情報処理装置
15日前
富士通株式会社
機械学習プログラム、機械学習方法および情報処理装置
16日前
富士通株式会社
情報処理プログラム、情報処理方法および情報処理装置
8日前
富士通株式会社
画像処理装置、画像処理方法および画像処理プログラム
8日前
富士通株式会社
情報処理プログラム、情報処理装置および情報処理方法
1日前
富士通株式会社
情報処理プログラム、情報処理方法および情報処理装置
1日前
富士通株式会社
情報処理装置,情報処理プログラムおよび印刷システム
1日前
富士通株式会社
機械学習プログラム、判定プログラム、及び機械学習装置
1日前
富士通株式会社
情報処理装置、情報処理システム、および情報処理プログラム
1日前
富士通株式会社
異常申請データ判定方法および異常申請データ判定プログラム
15日前
富士通株式会社
対応関係決定プログラム、対応関係決定方法、及び情報処理装置
1日前
富士通株式会社
データ処理プログラム、データ処理装置、及びデータ処理システム
15日前
続きを見る
他の特許を見る