TOP特許意匠商標
特許ウォッチ Twitter
10個以上の画像は省略されています。
公開番号2025004999
公報種別公開特許公報(A)
公開日2025-01-16
出願番号2023104959
出願日2023-06-27
発明の名称重要領域算出システム及び重要領域算出方法
出願人株式会社日立製作所
代理人青稜弁理士法人
主分類G06N 20/00 20190101AFI20250108BHJP(計算;計数)
要約【課題】学習データが少量の場合やデータの次元数が大きい場合であっても、機械学習モデルに用いるべき有効な特徴量を算出できるようにするためのデータの領域を算出できる重要領域算出システム及び重要領域算出方法を提供する。
【解決手段】重要領域算出システムは、情報処理装置を含む。情報処理装置は、スペクトル又はスペクトログラムを示すデータ及び当該データに対応するクラスラベルに基づいて、データのクラスを判別しやすい局所的な周波数帯域又は時間周波数領域を示す重要領域を、当該重要領域のデータのクラスの判別のし易さを示す指標である重要領域指標を最大化することで算出する。
【選択図】図1
特許請求の範囲【請求項1】
情報処理装置を含む重要領域算出システムであって、
前記情報処理装置には、スペクトル又はスペクトログラムを示すデータ及び当該データに対応するラベルが入力され、
前記情報処理装置は、前記スペクトル又はスペクトログラムを示すデータ及び前記ラベルに基づいて、機械学習に有効な局所的な周波数帯域又は時間周波数領域を示す重要領域を、当該重要領域のデータの機械学習に対する有効性を示す指標である重要領域指標を最大化することで算出する、
ように構成された、
重要領域算出システム。
続きを表示(約 1,800 文字)【請求項2】
請求項1に記載の重要領域算出システムにおいて、
前記情報処理装置は、
算出した前記重要領域をスペクトル又はスペクトログラム上に示した図を出力する、
ように構成された、
重要領域算出システム。
【請求項3】
請求項1に記載の重要領域算出システムにおいて、
前記重要領域指標は、前記重要領域のデータのクラスの判別のし易さを示す指標であり、
前記情報処理装置は、
前記スペクトル又はスペクトログラムを示すデータ及び当該データに対応する前記ラベルとしてのクラスラベルに基づいて、データのクラスの判別に有効な周波数インデックス又は時間周波数インデックスである重要インデックスの集合を算出し、
前記重要インデックスの集合の中から、隣接し連続する前記重要インデックスの数を前記重要領域指標として、前記重要インデックスの数を最大化するように前記重要領域を算出し、算出した前記重要領域を示す情報を出力する、
ように構成された、
重要領域算出システム。
【請求項4】
請求項3に記載の重要領域算出システムにおいて、
前記情報処理装置は、
前記スペクトル又はスペクトログラムを示すデータ及び前記クラスラベルから、周波数インデッス又は時間周波数インデックスごとの前記クラスの判別しやすさを表現する重要度マップを算出し、
前記重要度マップを空間フィルタでスムージングしてスムーズ重要度マップを算出し、
前記スムーズ重要度マップに基づいて、スムーズ重要度が高い周波数インデックス又は時間周波数インデックスを前記重要インデックスの集合として算出する、
ように構成された、
重要領域算出システム。
【請求項5】
請求項4に記載の重要領域算出システムにおいて、
前記情報処理装置は、
算出した前記重要度マップ及び前記スムーズ重要度マップを図として出力する、
ように構成された、
重要領域算出システム。
【請求項6】
請求項3に記載の重要領域算出システムにおいて、
前記情報処理装置は、
複数種類のスムージングパラメタ及び複数種類の重要インデックス決定パラメタを用いて複数の前記重要インデックスの集合を算出し、
各重要インデックスの集合から前記重要領域を算出し、算出した複数の前記重要領域を有効度合に基づいて並び替えて出力する、
ように構成された、
重要領域算出システム。
【請求項7】
請求項1に記載の重要領域算出システムにおいて、
前記情報処理装置は、
選択した周波数帯域又は時間周波数領域上の前記スペクトル又はスペクトログラムを示すデータのみを用いた際の交差検証の分類精度を前記重要領域指標として最大化することで、前記重要領域を算出し、算出した前記重要領域を示す情報を出力する、
ように構成された、
重要領域算出システム。
【請求項8】
請求項7に記載の重要領域算出システムにおいて、
前記情報処理装置は、
ベイズ最適化によって前記分類精度を最大化する、
ように構成された、
重要領域算出システム。
【請求項9】
請求項7に記載の重要領域算出システムにおいて、
前記情報処理装置は、
2つ目以降の重要領域を算出する際に、既算出の重要領域と重なる領域における分類精度を事前に定めた定数に設定したもとで最大化することで、既算出の重要領域と重ならない重要領域を算出する、
ように構成された、
重要領域算出システム。
【請求項10】
情報処理装置を用いた重要領域算出方法であって、
前記情報処理装置には、スペクトル又はスペクトログラムを示すデータ及び当該データに対応するラベルが入力され、
前記情報処理装置によって、前記スペクトル又はスペクトログラムを示すデータ及び前記ラベルに基づいて、機械学習に有効な局所的な周波数帯域又は時間周波数領域を示す重要領域を、当該重要領域のデータの機械学習に対する有効性を示す指標である重要領域指標を最大化することで算出する、
重要領域算出方法。

発明の詳細な説明【技術分野】
【0001】
本発明は、重要領域算出システム及び重要領域算出方法に関する。
続きを表示(約 1,900 文字)【背景技術】
【0002】
スペクトルやスペクトログラムデータを分類する技術を扱う。スペクトルやスペクトログラムデータとしては、例えば、音、振動、光などがある。分類問題の一例としては、データが正常か異常かを判定する異常検知問題がある。こうした技術の一例としては、機械音に対する異常音検知技術がある。例えば、非特許文献1では、正常音の特徴量を学習し、学習させた音の特徴量と整合する音を正常音、整合しない音を異常音と判別する。異常音検知技術では、機械の故障に起因する異常音を検知可能であり、機械の点検自動化に有用である。
【0003】
また、特許文献1には、(スペクトルやスペクトログラムとは限らない)機械の計測値から機械の状態を判別する技術が記載されている。特許文献1では、「複数の特徴量の各々について、正常状態と異常状態とを分離する分離度の最大値と、分離度が最大値となるタイミングと、を取得し、複数の特徴量の各々についての最大値に基づき、機械学習用に用いる特徴量を選択し、選択した特徴量におけるタイミングに基づき、機械設備が正常状態であった期間を設定し、前記期間における選択した特徴量のデータを機械学習用データとして抽出し」という記載がある。
【先行技術文献】
【特許文献】
【0004】
特開2021-92970号公報
【非特許文献】
【0005】
E. Marchi,“A novel approach for automatic acoustic novelty detection using a denoising autoencoder with Bidirectional LSTM neural networks,”in Proc of ICASSP, 2015
【発明の概要】
【発明が解決しようとする課題】
【0006】
スペクトルやスペクトログラムデータを分類する機械学習モデルを構築する際に、少量の学習データしか集められない場合がある。例えば、対象のデータの発生頻度が低かったり、測定に要する時間が長かったりする場合である。また、スペクトルデータやスペクトログラムデータの次元数が大きい場合がある。上記の状況では、機械学習モデルが学習データに対し過学習してしまい、低い分類精度しか得られない。
【0007】
また、特許文献1のように、異なる状態間での特徴量の分離度に基づき利用する特徴量を選択したとしても、スペクトルやスペクトログラムデータの分類問題においては十分な精度向上が見込めない。理由は、スペクトルやスペクトログラムデータはノイズやばらつきが大きい場合があり、その際に分類に有効でない特徴量が選択される可能性が高いためである。すなわち、ノイズやデータのばらつきによって偶然分離度が高い特徴量が生じ、それが選択されてしまうためである。
【0008】
本発明は上記課題を解決するためになされた。即ち、本発明の目的の一つは、学習データが少量の場合やデータの次元数が大きい場合であっても、機械学習モデルに用いるべき有効な特徴量を算出できるようにするためのデータの領域を算出できる重要領域算出システム及び重要領域算出方法を提供するものである。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明の重要領域算出システムは、情報処理装置を含む重要領域算出システムであって、前記情報処理装置には、スペクトル又はスペクトログラムを示すデータ及び当該データに対応するラベルが入力され、前記情報処理装置は、前記スペクトル又はスペクトログラムを示すデータ及び前記ラベルに基づいて、機械学習に有効な局所的な周波数帯域又は時間周波数領域を示す重要領域を、当該重要領域のデータの機械学習に対する有効性を示す指標である重要領域指標を最大化することで算出する、ように構成される。
【0010】
本発明の重要領域算出方法は、情報処理装置を用いた重要領域算出方法であって、前記情報処理装置には、スペクトル又はスペクトログラムを示すデータ及び当該データに対応するラベルが入力され、前記情報処理装置によって、前記スペクトル又はスペクトログラムを示すデータ及び前記ラベルに基づいて、機械学習に有効な局所的な周波数帯域又は時間周波数領域を示す重要領域を、当該重要領域のデータの機械学習に対する有効性を示す指標である重要領域指標を最大化することで算出する。
【発明の効果】
(【0011】以降は省略されています)

この特許をJ-PlatPatで参照する

関連特許

株式会社日立製作所
保全作業支援システム、保全作業支援方法および非一時的コンピュータ可読媒体
2日前
個人
対話装置
23日前
個人
政治のAI化
1か月前
個人
情報処理装置
23日前
個人
情報処理装置
19日前
個人
記入設定プラグイン
11日前
個人
プラグインホームページ
1か月前
個人
不動産売買システム
3日前
個人
情報入力装置
23日前
個人
物価スライド機能付生命保険
23日前
個人
マイホーム非電子入札システム
23日前
キヤノン株式会社
画像処理装置
1か月前
株式会社BONNOU
管理装置
16日前
個人
決済手数料0%のクレジットカード
26日前
サクサ株式会社
カードの制動構造
25日前
株式会社東芝
電子機器
4日前
株式会社ワコム
電子消去具
3日前
大同特殊鋼株式会社
輝線検出方法
1か月前
シャープ株式会社
電子機器
1か月前
ホシデン株式会社
タッチ入力装置
3日前
ミサワホーム株式会社
宅配ロッカー
1か月前
個人
パターン抽出方法及び通信多重化方法
2日前
パテントフレア株式会社
交差型バーコード
1か月前
株式会社アジラ
データ転送システム
1か月前
株式会社ライト
情報処理装置
16日前
トヨタ自動車株式会社
欠け検査装置
1か月前
トヨタ自動車株式会社
情報処理装置
29日前
村田機械株式会社
割当補助システム
29日前
株式会社CBE-A
情報処理システム
2日前
応研株式会社
業務支援システム
1か月前
Sansan株式会社
組織図生成装置
1か月前
住友重機械工業株式会社
力覚伝達装置
18日前
オベック実業株式会社
端末用スタンド
1か月前
大王製紙株式会社
RFIDタグ
2日前
トヨタ自動車株式会社
管理装置
1か月前
株式会社mov
情報処理システム
23日前
続きを見る