発明の詳細な説明【技術分野】 【0001】 本発明は、リン酸カルシウム、シュウ酸カルシウムなどのカルシウム結晶類に含まれる準安定相および安定相という結晶形態を分析する方法に関する。 続きを表示(約 2,700 文字)【背景技術】 【0002】 リン酸カルシウム、シュウ酸カルシウムなどのカルシウム結晶類は、安定相(安定形とも呼ばれる)、準安定相(準安定形とも呼ばれる)などの形態で存在する。これらのカルシウム結晶類は、例えば、骨などの生体中の物体、および、結石、血管の石灰化(動脈硬化)などの生体内で形成される物体中に多く含まれることが知られている。 【0003】 例えば、リン酸カルシウムの場合、ACP(amorphous calcium phosphate)、DCPA(Dicalcium phosphate anhydride)、DCPD(Dicalcium phosphate dehydrate)、OCP(Octacalcium phosphate)、β-TCP(β-tricalcium phosphate)、α-TCP(α-tricalcium phosphate)、CDHA(Hydroxyapatite with calcium deficient)、HAp(Hydroxyapatite)、TTCP(TetCP)(Tetra calcium phosphate)、CPP(β-Ca pyrophosphate)、OAp(Oxyapatite)など複数の相が報告されている(非特許文献1参照)。このうち、生体内における骨や動脈硬化組織において、準安定相のOCP(Octacalcium phosphate)が結晶化初期に多く含まれ、これが脱水していくことで安定相のHAp(Hydroxyapatite)へと変化していく過程が重要であると着眼されている。 【0004】 なお、生体内においては、準安定相に含まれるOCP(Octacalcium phosphate、リン酸八カルシウム)は、その一部のカルシウムイオンがナトリウムイオンに置き換わった形態で含まれる。以下では、このような形態のOCPも含めて、単に「OCP」と呼ぶ。また、実際の生体内では、HAp(Hydroxyapatite、水酸アパタイト)は炭酸基を数%置換して含む炭酸アパタイトとして生体内に存在することが知られている(非特許文献2参照)。ここでは、これらを踏まえた上で、アパタイトの代表的な相としてHApを安定相として記載する。 【0005】 骨などの生体中の物体に含まれるリン酸カルシウム結晶は、その形成初期の段階では、準安定相であるOCPを多く含有し、時間の経過とともに(すなわち、骨が成熟するにしたがって)、OCPが減少して安定相であるHApが増加していくことが知られている。 【0006】 また、リン酸カルシウム結晶は、例えば、動脈硬化(血管石灰化)、尿路結石などの各種疾患の原因物質として、多くの研究者や医療関係者に注目されている。血管石灰化組織中のリン酸カルシウム結晶は、動脈硬化の形成初期にはOCPの形態で形成され、徐々にHApに変化して沈着することが知られている(非特許文献3参照)。 【0007】 このように、生体由来のサンプルに含まれるカルシウム結晶類の結晶の状態を分析することで、生体内の組織や生成物の状態(例えば、形成過程、成熟度など)を知ることができる。そのため、結晶状態の分析結果は、例えば、動物の発生過程に関する研究分野、動脈硬化、尿路結石などの各種疾患および病態の分析に関する医療分野などに有効利用できる可能性がある。 【先行技術文献】 【特許文献】 【0008】 特開2008-197081号公報 【非特許文献】 【0009】 Liga Berzina-Cimdina and Natalija Borodajenko, Research of Calcium Phosphates Using Fourier Transform Infrared Spectroscopy, Infrared Spectroscopy - Materials Science, Engineering and Technology, Published online 25, April, 2012, 123-148. 石川邦夫、「骨組成(炭酸アパタイト)人工骨 第46回(令和3年度)井上春成賞表彰技術」、産学連携ジャーナル、2022年1月25日 O. Gourgas, J. Marulanda, P. Zhang, M. Murshed, and M. Cerruti, Multidisciplinary approach to understand medial arterial calcification, Arteriosclerosis, Thrombosis, and Vascular Biology, 38 (2018) 363-372. I.A. Karampas, C.G. Kontoyannis, Characterization of calcium phosphates mixtures, Vibrational Spectroscopy, 64 (2013) 126-133. N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, M. A. Ignelzi, Jr., Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 39, 434-442 (2006). 【発明の概要】 【発明が解決しようとする課題】 【0010】 従来、リン酸カルシウム結晶の分析は、ラマン分光分析、近赤外・中赤外領域の赤外吸収分光分析、X線解析などの方法を用いて行われてきた(例えば、非特許文献4参照)。しかしながら、非特許文献4の方法を用いてリン酸カルシウム結晶の分光分析を行った場合、ラマン分光分析、近赤外・中赤外領域の赤外吸収分光分析、では、両者のスペクトルの類似性からHApとOCPとを判別することは困難である。X線解析を用いるとHApとOCPは区別することができるが、試料が粉末化されていないと明瞭な違いである4.7°の反射が得にくいなどの測定困難性がある(非特許文献4のFig.1-3など参照)。 (【0011】以降は省略されています) この特許をJ-PlatPatで参照する