TOP特許意匠商標
特許ウォッチ Twitter
公開番号2024173190
公報種別公開特許公報(A)
公開日2024-12-12
出願番号2023091427
出願日2023-06-02
発明の名称異常検知方法及び異常検知システム
出願人愛知製鋼株式会社
代理人個人
主分類G06T 7/00 20170101AFI20241205BHJP(計算;計数)
要約【課題】学習負担の低減が容易な異常検知方法および異常検知システムを提供すること。
【解決手段】拡散モデルを利用して画像中の異常を検知する異常検知システム1は、入力画像に対してノイズを付加することでノイズ画像を生成する拡散回路11と、ノイズ画像からノイズを除去することにより復元画像を生成する逆拡散回路13と、入力画像と復元画像との類似度に基づき、入力画像中の異常の有無を判定する判定回路15と、を含み、逆拡散回路13は、正常画像を示すものとして得られた学習情報である変数によって条件付けされたニューラルネットワークを利用して復元画像を生成する。
【選択図】図1
特許請求の範囲【請求項1】
拡散モデルを利用して画像中の異常を検知する方法であって、
入力画像に対してノイズを付加することでノイズ画像を生成する拡散過程と、
当該ノイズ画像からノイズを除去することにより復元画像を生成する逆拡散過程と、
前記入力画像と前記復元画像との類似度に基づき、前記入力画像中の異常の有無を判定する判定過程と、を含み、
前記逆拡散過程は、正常画像を示すものとして得られた学習情報である変数によって条件付けされたニューラルネットワークを利用して前記復元画像を生成する過程である、異常検知方法。
続きを表示(約 910 文字)【請求項2】
請求項1において、前記入力画像は、撮像カメラによる撮像画像、あるいは該撮像画像に所定の変換処理を施した変換画像であり、
前記復元画像は、前記ノイズ画像からノイズを除去したノイズ除去画像、あるいは前記所定の変換処理に対する逆変換に相当する処理を当該ノイズ除去画像に施した逆変換画像である、異常検知方法。
【請求項3】
請求項1において、前記入力画像は、製品または部品の画像であり、当該製品または部品の異常を検知する産業用途の異常検知方法。
【請求項4】
請求項1において、前記入力画像は、環境を撮像して得られた画像であり、当該環境の中で生じた異常を検知する異常検知方法。
【請求項5】
請求項1において、前記判定過程は、前記類似度に関する閾値処理により異常の有無を判定する、異常検知方法。
【請求項6】
請求項1において、前記判定過程は、前記入力画像と前記復元画像との差分画像に処理を施して前記類似度を求める、異常検知方法。
【請求項7】
拡散モデルを利用して画像中の異常を検知するシステムであって、
入力画像に対してノイズを付加することでノイズ画像を生成する拡散回路と、
当該ノイズ画像からノイズを除去することにより復元画像を生成する逆拡散回路と、
前記入力画像と前記復元画像との類似度に基づき、前記入力画像中の異常の有無を判定する判定回路と、を含み、
前記逆拡散回路は、正常画像を示すものとして得られた学習情報である変数によって条件付けされたニューラルネットワークを利用して前記復元画像を生成するように構成されている、異常検知システム。
【請求項8】
請求項7において、前記判定回路は、前記類似度に関する閾値処理により異常の有無を判定するように構成されている、異常検知システム。
【請求項9】
請求項7において、前記判定回路は、前記入力画像と前記復元画像との差分画像に処理を施して前記類似度を求めるように構成されている、異常検知システム。

発明の詳細な説明【技術分野】
【0001】
本発明は、機械学習分野における拡散モデルを利用して画像中の異常を検知する方法及びシステムに関する。
続きを表示(約 1,500 文字)【背景技術】
【0002】
従来、入力画像と復元画像との類似度を表す再構成誤差を利用して入力画像中の異常を検知する技術が知られている(例えば下記の特許文献1参照)。このような技術を採用すれば、例えば人手によって異常を検知する場合と比べて、入力画像中の異常を確実性高く検出できる。
【先行技術文献】
【特許文献】
【0003】
特開2023-16030号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、前記従来の技術では、復元画像の品質が、異常の検知性能を大きく左右するという課題がある。
【0005】
本発明は、前記従来の問題点に鑑みてなされたものであり、高品質の画像を復元することにより異常の検知性能を高めた異常検知システムを提供しようとするものである。
【課題を解決するための手段】
【0006】
本発明の一態様は、拡散モデルを利用して画像中の異常を検知する方法であって、
入力画像に対してノイズを付加することでノイズ画像を生成する拡散過程と、
当該ノイズ画像からノイズを除去することにより復元画像を生成する逆拡散過程と、
前記入力画像と前記復元画像との類似度に基づき、前記入力画像中の異常の有無を判定する判定過程と、を含み、
前記逆拡散過程は、正常画像を示すものとして得られた学習情報である変数によって条件付けされたニューラルネットワークを利用して前記復元画像を生成する過程である、異常検知方法にある。
【0007】
また、本発明の一態様は、拡散モデルを利用して画像中の異常を検知するシステムであって、
入力画像に対してノイズを付加することでノイズ画像を生成する拡散回路と、
当該ノイズ画像からノイズを除去することにより復元画像を生成する逆拡散回路と、
前記入力画像と前記復元画像との類似度に基づき、前記入力画像中の異常の有無を判定する判定回路と、を含み、
前記逆拡散回路は、正常画像を示すものとして得られた学習情報である変数によって条件付けされたニューラルネットワークを利用して前記復元画像を生成するように構成されている、異常検知システムにある。
【発明の効果】
【0008】
本発明に係る異常検知方法及び異常検知システムは、拡散モデルを利用して異常を検知する方法あるいはシステムである。本発明では、入力画像に基づくノイズ画像からノイズを除去することにより復元画像が生成される。そして本発明では、入力画像と復元画像との類似度に基づいて異常の有無が判定される。
【0009】
本発明の技術的特徴のひとつは、正常画像を示すものとして得られた学習情報である変数によって条件付けされたニューラルネットワークを利用して上記の復元画像を生成する点にある。このように生成された復元画像は、正常画像を精度高く再現した高品質のものとなる。本発明の異常検知方法及び異常検知システムによれば、正常画像を示す変数によって条件付けされたニューラルネットワークを利用して生成された復元画像を、入力画像と比較することにより、精度高く入力画像の異常の有無を判定できる。
【図面の簡単な説明】
【0010】
異常検知システムの構成を示すブロック図。
木ねじの撮像画像(入力画像)を例示する図。
異常検知処理の流れを示すフロー図。
入力画像Aと復元画像Bとの差分画像Cの説明図。
【発明を実施するための形態】
(【0011】以降は省略されています)

この特許をJ-PlatPatで参照する
Flag Counter

関連特許

愛知製鋼株式会社
高圧水素部品用マルテンサイト系ステンレス鋼、これを用いた高圧水素部品及びその製造方法
18日前
個人
非正規コート
12日前
個人
人物再現システム
9日前
個人
AI飲食最適化プラグイン
2日前
有限会社ノア
データ読取装置
10日前
個人
電話管理システム及び管理方法
3日前
株式会社ザメディア
出席管理システム
17日前
個人
広告提供システムおよびその方法
12日前
個人
日誌作成支援システム
9日前
ミサワホーム株式会社
情報処理装置
16日前
株式会社タクテック
商品取出集品システム
16日前
トヨタ自動車株式会社
工程計画装置
17日前
個人
ポイント還元付き配送システム
10日前
トヨタ自動車株式会社
作業判定方法
18日前
オベック実業株式会社
接続構造
9日前
ゼネラル株式会社
RFIDタグ付き物品
19日前
トヨタ自動車株式会社
情報処理システム
18日前
株式会社村田製作所
動き検知装置
16日前
個人
コンテンツ配信システム
16日前
株式会社実身美
ワーキングシェアリングシステム
10日前
トヨタ自動車株式会社
情報処理方法
18日前
株式会社ドクター中松創研
生成AIの適切使用法
9日前
株式会社国際電気
支援システム
19日前
富士通株式会社
画像生成方法
22日前
株式会社エスシーシー
置き配システム
10日前
個人
プラットフォームシステム
16日前
ブラザー工業株式会社
ラベルプリンタ
18日前
株式会社知財事業研究所
運行計画作成システム
16日前
トヨタ自動車株式会社
作業支援システム
16日前
甍エンジニアリング株式会社
屋根材買い取りシステム
22日前
株式会社 喜・扇
緊急事態対応円滑化システム
9日前
株式会社K-model
運用設計資料作成装置
12日前
個人
注文管理システム及び注文管理プログラム
9日前
トヨタ自動車株式会社
情報処理装置
9日前
日立建機株式会社
潤滑油診断システム
17日前
株式会社日立製作所
設計支援装置
17日前
続きを見る