TOP特許意匠商標
特許ウォッチ Twitter
10個以上の画像は省略されています。
公開番号2025016662
公報種別公開特許公報(A)
公開日2025-02-04
出願番号2024192532,2021528240
出願日2024-10-31,2020-06-15
発明の名称エネルギー変換装置
出願人個人
代理人
主分類F03B 17/02 20060101AFI20250128BHJP(液体用機械または機関;風力原動機,ばね原動機,重力原動機;他類に属さない機械動力または反動推進力を発生するもの)
要約【課題】一次エネルギーから二次エネルギーを効率良く生成し変換可能なエネルギー変換装置を提供する
【解決手段】エネルギー変換装置1は、液体10が貯蔵された液タンク11と、液タンク11内に縦方向に複数個設けられ、回転または上下移動自在な気体受け部12と、液タンク11内において、下部に位置する気体受け部12の下方から圧縮気体を噴出するノズル13と、一次エネルギー源としての圧縮気体を貯留してノズル13に圧縮気体を送出するガスボンベ14と、気体受け部12がノズル13から噴出された圧縮気体を受けて生じる浮力により気体受け部12に生じる、回転または上方移動の運動エネルギーを液タンク11の外部に二次エネルギーとして出力する出力手段3と、液タンク11から気体をガスボンベ14に戻す回収装置4と、を備える。
【選択図】図1
特許請求の範囲【請求項1】
エネルギー変換装置であって、
液体が貯蔵された液タンクと、
前記液タンク内に縦方向に複数個設けられ、回転または上下移動自在な気体受け部と、
前記液タンク内において、下部に位置する前記気体受け部の下方から圧縮気体を噴出するノズルと、
一次エネルギー源としての前記圧縮気体を貯留して前記ノズルに前記圧縮気体を送出するガスボンベと、
前記気体受け部が前記ノズルから噴出された前記圧縮気体を受けて生じる浮力により前記気体受け部に生じる、回転または上方移動の運動エネルギーを前記液タンクの外部に二次エネルギーとして出力する出力手段と、
前記液タンクから気体を前記ガスボンベに戻す回収装置と、を備えたことを特徴とするエネルギー変換装置。
続きを表示(約 1,200 文字)【請求項2】
前記ガスボンベは、自然エネルギーを用いて圧縮気体を生成する圧縮気体生成器に接続されていることを特徴とする請求項1に記載のエネルギー変換装置。
【請求項3】
前記ガスボンベは、水素と酸素を含む混合ガスの燃焼熱によりドライアイスを気体として体積膨張させて前記圧縮気体を生成する圧縮気体生成器に接続されていることを特徴とする請求項1または請求項2に記載のエネルギー変換装置。
【請求項4】
前記気体受け部は、開閉自在な可動羽を有して構成され、前記ノズルから噴出される圧縮気体を受けて浮力を生じるときは開いた状態となり、圧縮気体を受けることなく浮力を生じないときは閉じた状態となる、ことを特徴とする請求項1乃至請求項3のいずれか一項に記載のエネルギー変換装置。
【請求項5】
前記ガスボンベは、開閉制御されるバルブを介在して前記ノズルから圧縮気体を噴出し、前記バルブは、前記気体受け部が所定の位置に来たときにだけ開くように制御されている、ことを特徴とする請求項1乃至請求項4のいずれか一項に記載のエネルギー変換装置。
【請求項6】
前記出力手段は、前記気体受け部の複数がリング状に分散配置されたベルトと、前記ベルトが架けられ、前記ベルトの移動によって回転するギアとを備える動力機構を含むことを特徴とする請求項1乃至請求項5のいずれか一項に記載のエネルギー変換装置。
【請求項7】
前記液タンクの内部と連通する連通開口と、上方に開口する上部開口とを有する水封タンクを、前記液タンクの側方外部に備え、
前記出力手段は、前記動力機構の前記ギヤの回転を伝達する結合器およびシャフトを、前記液タンクと前記水封タンクが連通する空間にを備え、前記結合器と前記シャフトとを用いて、前記上部開口から前記ギヤの回転エネルギーを出力することを特徴とする請求項6に記載のエネルギー変換装置。
【請求項8】
前記ガスボンベは、気体の配管を熱交換器に通して気体を加熱させることにより前記圧縮気体を生成する圧縮気体生成器、または、内圧を調整可能な浮輪状のOリングをシール材として有する加圧ピストンで気体を加圧することにより前記圧縮気体を生成する圧縮気体生成器、に接続されていることを特徴とする請求項1乃至請求項7のいずれか一項に記載のエネルギー変換装置。
【請求項9】
前記液タンクは、前記ガスボンベに対して複数個が並列的または直列的に設けられていることを特徴とする請求項1乃至請求項8のいずれか一項に記載のエネルギー変換装置。
【請求項10】
車体移動装置であって、
車体と、
前記車体の下面の前後左右に設けられた氷上滑走用のそりと、
路面に設けられ、前記そりの氷上滑走を案内する、液体を凍結して氷面が形成されたレールと、
前記車体を走行させる駆動装置と、を備えたことを特徴とする車体移動装置。
(【請求項11】以降は省略されています)

発明の詳細な説明【技術分野】
【0001】
本発明は、一次エネルギーを元にして二次エネルギーを変換生成するエネルギー変換装置に関する。
続きを表示(約 13,000 文字)【背景技術】
【0002】
エネルギー変換装置として、例えば、水中に圧送したエアーの浮力を利用してリフトを駆動し、このリフトの駆動をもって発電する装置が知られている(特開昭56-113065号公報)。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【0004】
本発明は、一次エネルギーを元にして二次エネルギーを変換生成するエネルギー変換装置に関する。
エネルギー変換装置として、例えば、水中に圧送したエアーの浮力を利用してリフトを駆動し、このリフトの駆動をもって発電する装置が知られている(特開昭56-113065号公報)。
ところが、従来のこの種の装置は、水中に圧送したエアーを十分かつ有効に利用できるようになっていないため、エネルギー利用効率が低いものであった。
本発明は、上記問題を解消するものであり、一次エネルギーから二次エネルギーを効率良く生成し変換可能なエネルギー変換装置を提供することを目的とする。
本発明の一態様に係るエネルギー変換装置は、液体が貯蔵された液タンクと、前記液タンク内に縦方向に複数個設けられ、回転または上下移動自在な気体受け部と、前記液タンク内において、下部に位置する前記気体受け部の下方から圧縮気体を噴出するノズルと、一次エネルギー源としての前記圧縮気体を貯留して前記ノズルに前記圧縮気体を送出するガスボンベと、前記気体受け部が前記ノズルから噴出された前記圧縮気体を受けて生じる浮力により前記気体受け部に生じる、回転または上方移動の運動エネルギーを前記液タンクの外部に二次エネルギーとして出力する出力手段と、前記液タンクから気体を前記ガスボンベに戻す回収装置と、を備えたことを特徴とする。
このような構成によれば、液体が貯蔵された液タンク内に一次エネルギー源としての圧縮気体を噴出し、生じる浮力による移動エネルギーを二次エネルギーに変換し、液タンクから気体をガスボンベに回収し再利用するので、エネルギーを効率良く生成し変換可能となる。
また、本発明の一態様に係る車体移動装置は、車体と、前記車体の下面の前後左右に設けられた氷上滑走用のそりと、路面に設けられ、前記そりの氷上滑走を案内する、液体を凍結して氷面が形成されたレールと、前記車体を走行させる駆動装置と、を備えたことを特徴とする。
このような構成によれば、抵抗の少ない氷上滑走により慣性運動を行うことができ、走行のエネルギー効率を高めることができる。
また、本発明の一態様に係るエネルギー利用装置は、恒温の地下水のエネルギーを利用するエネルギー利用装置であって、所定の恒温の地下水を取得可能な所定の地下に埋設されて恒温の地下水を貯留する地下タンクと、光透過性材料で形成された複数の中空チューブを連通させて連結することにより内部に空洞部を形成してなる構造体と、前記地下タンクに貯蔵された恒温の地下水を前記構造体の中空チューブに流通させるパイプおよび循環ポンプと、前記構造体により形成された前記空洞部に、その一端側から他端側に向けて空気を送風するファンと、を備え、前記空洞部を、空調スペースまたはエネルギー交換機器設置スペースとしたことを特徴とする。
このような構成によれば、恒温の地下水のエネルギーを有効利用できる。
また、本発明の別の一態様に係るエネルギー利用装置は、恒温の地下のエネルギーを利用するエネルギー利用装置であって、所定の恒温である所定の深度の地下と地表との間に往復して設けた中空パイプと、前記中空パイプに地表側の空気を送り込むファンと、を備え、前記ファンにより前記中空パイプに送り込まれて前記所定の深度の地下において冷却または加熱された空気を地表側で空調に利用することを特徴とする。
このような構成によれば、恒温の地下水のエネルギーを有効利用できる。
また、本発明のさらに別の一態様に係るエネルギー利用装置は、日光エネルギーを利用したエネルギー利用装置であって、光透過性材料で形成された複数の中空チューブを連通させて連結することにより内部に空洞部を形成してなる構造体と、前記構造体の中空チューブに水または温水を流通させるパイプおよび循環ポンプと、前記構造体により形成された前記空洞部に、その一の開口から他の開口に向けて空気を送風するファンと、を備え、前記構造体は日光を受け得る場所に設置され、前記空洞部の平面視底面側に海水を通し、その海水の上面に前記ファンによる風を通し、海水の蒸発を促進して塩を得ることを特徴とする。
このような構成によれば、日光エネルギーを有効利用できる。
また、本発明のさらに別の一態様に係るエネルギー利用装置は、圧縮空気を空調に利用するエネルギー利用装置であって、自然エネルギーを動力とした空気圧縮コンプレッサと、前記空気圧縮コンプレッサにより圧縮した空気を貯蔵する、地下に埋設したタンクと、を備え、前記タンクに貯蔵され温度調節された圧縮空気を、パイプを通して空調スペースに送出することを特徴とする。
このような構成によれば、自然エネルギーを有効利用でき、エネルギーを圧縮空気の態様でためておくことができる。
また、本発明のさらに別の一態様に係るエネルギー利用装置は、自然エネルギーを利用して発電するエネルギー利用装置であって、海岸に施設した、海の波の力で海水が海面より高い位置までせり上がるように作用するリアス式海岸に疑似した壁構造体と、前記壁構造体により、せり上がった海水を導入して貯留するタンクと、前記タンクに貯留させた海水の位置エネルギーを利用して発電する水力発電機または空気圧縮コンプレッサと、を備えたことを特徴とする。
このような構成によれば、海水の運動エネルギーを有効利用できる。
【課題を解決するための手段】
【0005】
本発明は、一次エネルギーを元にして二次エネルギーを変換生成するエネルギー変換装置に関する。
エネルギー変換装置として、例えば、水中に圧送したエアーの浮力を利用してリフトを駆動し、このリフトの駆動をもって発電する装置が知られている(特開昭56-113065号公報)。
ところが、従来のこの種の装置は、水中に圧送したエアーを十分かつ有効に利用できるようになっていないため、エネルギー利用効率が低いものであった。
本発明は、上記問題を解消するものであり、一次エネルギーから二次エネルギーを効率良く生成し変換可能なエネルギー変換装置を提供することを目的とする。
本発明の一態様に係るエネルギー変換装置は、液体が貯蔵された液タンクと、前記液タンク内に縦方向に複数個設けられ、回転または上下移動自在な気体受け部と、前記液タンク内において、下部に位置する前記気体受け部の下方から圧縮気体を噴出するノズルと、一次エネルギー源としての前記圧縮気体を貯留して前記ノズルに前記圧縮気体を送出するガスボンベと、前記気体受け部が前記ノズルから噴出された前記圧縮気体を受けて生じる浮力により前記気体受け部に生じる、回転または上方移動の運動エネルギーを前記液タンクの外部に二次エネルギーとして出力する出力手段と、前記液タンクから気体を前記ガスボンベに戻す回収装置と、を備えたことを特徴とする。
このような構成によれば、液体が貯蔵された液タンク内に一次エネルギー源としての圧縮気体を噴出し、生じる浮力による移動エネルギーを二次エネルギーに変換し、液タンクから気体をガスボンベに回収し再利用するので、エネルギーを効率良く生成し変換可能となる。
また、本発明の一態様に係る車体移動装置は、車体と、前記車体の下面の前後左右に設けられた氷上滑走用のそりと、路面に設けられ、前記そりの氷上滑走を案内する、液体を凍結して氷面が形成されたレールと、前記車体を走行させる駆動装置と、を備えたことを特徴とする。
このような構成によれば、抵抗の少ない氷上滑走により慣性運動を行うことができ、走行のエネルギー効率を高めることができる。
また、本発明の一態様に係るエネルギー利用装置は、恒温の地下水のエネルギーを利用するエネルギー利用装置であって、所定の恒温の地下水を取得可能な所定の地下に埋設されて恒温の地下水を貯留する地下タンクと、光透過性材料で形成された複数の中空チューブを連通させて連結することにより内部に空洞部を形成してなる構造体と、前記地下タンクに貯蔵された恒温の地下水を前記構造体の中空チューブに流通させるパイプおよび循環ポンプと、前記構造体により形成された前記空洞部に、その一端側から他端側に向けて空気を送風するファンと、を備え、前記空洞部を、空調スペースまたはエネルギー交換機器設置スペースとしたことを特徴とする。
このような構成によれば、恒温の地下水のエネルギーを有効利用できる。
また、本発明の別の一態様に係るエネルギー利用装置は、恒温の地下のエネルギーを利用するエネルギー利用装置であって、所定の恒温である所定の深度の地下と地表との間に往復して設けた中空パイプと、前記中空パイプに地表側の空気を送り込むファンと、を備え、前記ファンにより前記中空パイプに送り込まれて前記所定の深度の地下において冷却または加熱された空気を地表側で空調に利用することを特徴とする。
このような構成によれば、恒温の地下水のエネルギーを有効利用できる。
また、本発明のさらに別の一態様に係るエネルギー利用装置は、日光エネルギーを利用したエネルギー利用装置であって、光透過性材料で形成された複数の中空チューブを連通させて連結することにより内部に空洞部を形成してなる構造体と、前記構造体の中空チューブに水または温水を流通させるパイプおよび循環ポンプと、前記構造体により形成された前記空洞部に、その一の開口から他の開口に向けて空気を送風するファンと、を備え、前記構造体は日光を受け得る場所に設置され、前記空洞部の平面視底面側に海水を通し、その海水の上面に前記ファンによる風を通し、海水の蒸発を促進して塩を得ることを特徴とする。
このような構成によれば、日光エネルギーを有効利用できる。
また、本発明のさらに別の一態様に係るエネルギー利用装置は、圧縮空気を空調に利用するエネルギー利用装置であって、自然エネルギーを動力とした空気圧縮コンプレッサと、前記空気圧縮コンプレッサにより圧縮した空気を貯蔵する、地下に埋設したタンクと、を備え、前記タンクに貯蔵され温度調節された圧縮空気を、パイプを通して空調スペースに送出することを特徴とする。
このような構成によれば、自然エネルギーを有効利用でき、エネルギーを圧縮空気の態様でためておくことができる。
また、本発明のさらに別の一態様に係るエネルギー利用装置は、自然エネルギーを利用して発電するエネルギー利用装置であって、海岸に施設した、海の波の力で海水が海面より高い位置までせり上がるように作用するリアス式海岸に疑似した壁構造体と、前記壁構造体により、せり上がった海水を導入して貯留するタンクと、前記タンクに貯留させた海水の位置エネルギーを利用して発電する水力発電機または空気圧縮コンプレッサと、を備えたことを特徴とする。
このような構成によれば、海水の運動エネルギーを有効利用できる。
【図面の簡単な説明】
【0006】
本発明の一実施形態に係るエネルギー変換装置の構成図。
(a)は同装置を構成する気体受け部の開いた状態の斜視図、(b)は同気体受け部が閉じた状態の斜視図。
本発明の別の実施形態に係るエネルギー変換装置の構成図。
本発明のさらに別の実施形態に係るエネルギー変換装置の構成図。
本発明のさらに別の実施形態に係るエネルギー変換装置の構成図。
本発明のさらに別の実施形態に係るエネルギー変換装置の構成図。
本発明のエネルギー変換装置を構成する一実施形態に係る圧縮気体生成器の構成図を示し、(a)は圧縮工程、(b)は吸入工程における動作を示す。
本発明のエネルギー変換装置に用いられる別の圧縮気体生成器の構成図。
本発明のさらに別の実施形態に係るエネルギー変換装置の構成図。
本発明の一実施形態に係るエネルギー変換装置における動作ガスの循環工程を説明する図。
本発明のさらに別の実施形態に係るエネルギー変換装置の構成図。
(a)は本発明の一実施形態に係る車体移動装置のそり走行状態を示す正面図、(b)は同車体移動装置の車輪走行状態を示す図。
(a)(b)は、それぞれ本発明の別の実施形態に係る車体移動装置の側面図。
(a)は同車体移動装置における一実施形態に係る制動装置の正面図、(b)は同制動装置の側面図。
本発明の一実施形態に係るエネルギー利用装置の構成図。
同装置の利用例を示すの斜視図。
同装置の別の構成例を示すの構成図。
本発明のさらに別の実施形態に係るエネルギー利用装置の構成図。
本発明のさらに別の実施形態に係るエネルギー利用装置の構成図。
本発明のさらに別の実施形態に係るエネルギー利用装置の構成図。
(a)は本発明のさらに別の実施形態に係るエネルギー利用装置の構成を示す側面図、(b)同装置の平面図。
【符号の説明】
【0007】
1 エネルギー変換装置
10 液体
11 液タンク
11k 上部開口
11w 連通開口
11A 水封タンク
12 気体受け部
12a 可動羽
13 ノズル
14 ガスボンベ
14a バルブ
3 出力手段
3a,3c,3e 結合器
3b,3d,3f シャフト
31 動力機構
31a ベルト
31b ギヤ
4 回収装置
5 圧縮気体生成器
52 加圧ピストン
52b シール材
54 熱交換機
2 車体移動装置
2a 氷面
20 路面
21 車体
22 そり
23 レール
24 車輪(駆動装置)
6,6A,6B,6C,7 エネルギー利用装置
6a 中空チューブ
60 構造体
61 空洞部
62 パイプ
63 ファン
64 ソーラーパネル
65 中空パイプ
66 ファン
67 空調スペース
68 空気圧縮コンプレッサ
70 海水
71 壁構造体
72 タンク
74 水力発電機
9 海水
P3 循環ポンプ
T 地下タンク
Ta タンク
【発明の詳細】
【0008】
(エネルギー変換装置)
以下、本発明の一実施形態に係るエネルギー変換装置について、図面を参照して説明する。図1に示すように、エネルギー変換装置1は、液タンク11と、気体受け部12と、ノズル13と、ガスボンベ14と、出力手段3と、回収装置4とを備えている。このエネルギー変換装置1は、液体10が貯蔵された液タンク11内に一次エネルギー源としての圧縮気体を噴出し、生じる浮力による移動エネルギーを、液タンク11から出力可能な二次エネルギーに変換する装置である。
液タンク11は、密封可能なタンクであり、通常は密封状態で使用される。液タンク11には、液体10が貯蔵されている。液体10は、例えば、水が好適に用いられるが、水に限られず任意の液体を用いることができる。液タンク1の大きさは、例えば2~3mであるが、これに限定されるものではない。液タンク11の内部には、液体10による浮力を用いて回転運動を発生させる動力機構31が設置されている。動力機構31は、上下方向に長いリング状に配置されたベルト31aと、ベルト31aが架けられた上下2つのギア31bと、ベルト31aの移動によって回転するギア31bとを備えている。上側のギヤ31bは、図1では液体10内に埋没しているが、その上部が液面から上に出ていてもよく、例えば、ギヤ31bの上半分近くまで液面から出ていてもよい。どれだけ出すかについては、気体受け部12における気体による浮力の有効性と、ギヤ31bの回転に対する抵抗、例えば液体10が気体受け部12に及ぼす抵抗などとの兼ね合いなどによって、適宜決めればよい。
気体受け部12は、ベルト31aにリング状に分散配置されることにより、液タンク11内において、縦方向に複数個設けられている。気体受け部12は、ベルト31aの移動に連動して上下移動自在であり、上下の位置では回転移動を行い、全体として上下間の周回運動を行う。図1に示す本実施形態において、ベルト31aとギヤ31bは、右回りつまり時計回りに回転する。
ノズル13は、液タンク11内において、下部に位置する気体受け部12の下方から圧縮気体を噴出する。圧縮気体は、気体受け部12に捕獲されて気体受け部12に浮力を与える。気体受け部12は、液体10からの浮力を受けるが、上方に移動する際、ノズル13から噴出される圧縮気体を受けることにより、下方に移動する場合よりも、より大きな浮力を受けることになる。ノズル13は、図1では1本だけ図示されているが、1本に限られず複数本としてもよい。例えば、上向きシャワーノズルのように、ノズル13の複数の開口を、気体受け部12の下向き開口の全面に分布させることにより、広い面積から気体を気体受け部12内に出してもよい。
気体受け部12は、図2(a)(b)に示すように、開閉自在な可動羽12aを有して構成され、ノズル13から噴出される圧縮気体を受けて浮力を生じるときは開いた状態となり、圧縮気体を受けることなく気体からの浮力を生じないときは閉じた状態となる。この構造により、気体受け部12とベルト31aの周回運動が、より効率よく行われる。
ガスボンベ14は、一次エネルギー源としての圧縮気体を貯留し、その圧縮気体をノズル13に送出する。ガスボンベ14は、開閉制御されるバルブ14aを介在してノズル13から圧縮気体を噴出する。バルブ14aは、気体受け部12が所定の位置に来たときにだけ開くように制御される。これにより、圧縮気体が、効率よく気体受け部12に補足されるので圧縮気体の消費が抑制され、また液体10に気泡が混じるのを抑制して液体10の密度を高く維持できるので液体10本来の浮力を有効利用できる。
ガスボンベ14は、圧縮気体を生成する圧縮気体生成器5に接続されている。圧縮気体生成器5は、例えば、羽根車またはロータの回転運動又、またはピストンの往復運動によって気体を圧送して、機械エネルギーを流体である気体の持つエネルギーに変換する一般的なコンプレッサを用いればよい。圧縮気体生成器5は、動力源50からの動力によって動作する。動力源50は、自然エネルギー、例えば、風力、地熱、水力、潮汐力、波力などが、温暖化ガス発生抑制のため、好適に用いられる。
圧縮気体生成器5によって生成される圧縮気体は、タンク11内の液体10の水圧に抗して、ノズル13から気体受け部12に気体を供給できるように、圧力を高めた気体である。気体受け部12に供給される気体は、液体10による浮力を気体受け部12に与えるために供給される。
出力手段3は、気体受け部12に生じる、浮力による上方移動の運動エネルギーを液タンク11の外部に二次エネルギーとして出力する手段である。図1の本実施形態において、出力手段3は、浮力による運動エネルギーをギヤ31bの回転軸31cの回転エネルギーに変換する動力機構31と、回転軸31cの回転エネルギーを、二次エネルギーとしての電気エネルギーに変換する発電装置32と、を備えている。
回収装置4は、液タンク11から気体をガスボンベ14に戻す装置である。液タンク11の上部の空間は、気体が滞留するガス室15となっている。回収装置4は、そのガス室15に滞留している気体を、圧縮気体生成器5を介してガスボンベ14に送り込む。ガス室15内の気体は、ノズル13から創出された気体と、液体10の蒸気などである。
回収装置4は、ガス室15から圧縮気体生成器5までの管路に沿って、三方弁41、サブポンベ40、およびバルブ42を備えている。三方弁41とバルブ42は、開閉制御される、流量調整および閉止用のバルブである。これrは、逆止弁の機能を有する複合機能弁とするのが望ましい。三方弁41は、ガス室15内の圧力を下げるために気体を逃がす弁の機能を有する。サブポンベ40は、ガス室15の容量を補助する、バッファとして機能する。
また、圧縮気体生成器5が、三方弁41、サブポンベ40、およびバルブ42の機能を有する場合、回収装置4は、ガス室15と圧縮気体生成器5とを接続する配管だけの構成であってもよい。
次に、エネルギー変換装置1の動作を説明する。本装置の動作ガスつまり圧縮気体は、空気であるとして説明するが、空気に限定されない。また、液体10が、水を想定して説明する。動力機構31が設置された液タンク11に水を注入し、ガスボンベ14などの配管を、ノズル13に接続し、回収装置4の配管をガス室15に接続して、圧縮気体生成器5を動作させて圧縮気体を準備する。三方弁41でガス室15のガス圧を調整しながら、さらに、バルブ14aを調整しながらノズル13に圧縮気体を送出する。
ノズル13の上向き開口から出てきた圧縮気体を構成する気体が、上向きに移動するベルト31aの最下部で開口した気体受け部12に捕獲されて気体受け部12の上部空間の水と置き換わる。すると、気体受け部12に気体に基づく浮力が加わるので、液体10の浮力に基づく左右のベルト31aに作用する力に差が生じ、ベルト31aが徐々に右回り回転を始める。ノズル13の上に次々と移動してくる気体受け部12に気体が受けとられると、ベルト31aの周回移動が定常状態となる。
ベルト31aの周回移動の定常状態において、上側のギヤ31bに接するベルト31aとともに回転運動する気体受け部12から、気体が情報に放出される。気体を放出した気体受け部12は、開閉自在の可動羽12aを閉じた状態で、下方に移動する。下側のギヤ31bに接するベルト31aとともに回転運動する気体受け部12は、ノズル13よりも上方に来ると、開閉自在の可動羽12aが開いて、ノズル13からの気体を受け取ることになる。
周回移動するベルト31aは、浮力を受けて上昇する気体受け部12からの運動エネルギーをギヤ31bの回転運動エネルギーに変換する。ギヤ31bの回転は回転軸31cを回転させ、その回転エネルギーは発電装置31が生成する電気エネルギーとなって、外部に取り出される。
ここで、三種の圧力P1,PW,P2の関係を説明する。圧力P1はガスボンベ14から送出される圧縮気体の圧力である。圧力PWは液体10の深さで決まる水圧である。圧力P2はガス室15における気体の圧力である。これらの圧力は、エネルギー変換装置1が定常状態で動作しているとき下式の関係にある。この式は、ガスボンベ14からの気体がノズル13から液体10の中に侵入可能な条件を示す。
P2+PW<P1
圧縮気体生成器5は、必要な圧力P1を得るために気体を圧縮して、少なくとも水圧PW以上の高圧にする。回収装置4は、三方弁41を開閉制御して、上式が満たされるようにガス室15における気体の圧力P2を調整する。
このエネルギー変換装置1においては、圧縮気体が作動気体として圧力変動を受けながら、装置内を循環する。エネルギー変換装置1は、定常状態において、動作ガスの閉循環回路を形成する。動作ガスの動作ガスの圧力を調整するため、各種の弁、圧力センサ、タンク、などの部品を、エネルギー変換装置1に適宜組み込んでもよい。
このようなエネルギー変換装置1によれば、液体10が貯蔵された液タンク11内に一次エネルギー源としての圧縮気体を噴出し、生じる浮力による移動エネルギーを二次エネルギーに変換し、液タンク11から気体をガスボンベ14に回収し再利用することができる。従って、エネルギーを効率良く生成し変換可能となる。気体の再利用は、空気などではなく特殊な気体を作動気体、すなわち圧縮気体として用いる場合、その特殊な気体を回収し再利用することができる。また、ガス室15における気体を、例えば大気中などに開放しないので、ガス室15の気体の圧力P2、すなわち気体の圧力エネルギーを再利用することができる。
次に、図3を参照して、別の実施形態を説明する。この実施形態のエネルギー変換装置1は、図1の実施形態における発電装置32に替えて、ギヤ31bの回転エネルギーを機械的に外部に取り出す伝達機構30を備えている。本例において、液タンク11は地下に設置されているが、地下に設置することに限られず、半地下や地上などに接地してもよい。図1のエネルギー変換装置1についても同様である。
伝達機構30は、動力機構31の下側のギヤ31bに係合してその回転エネルギーを受け取るギヤなどの結合器3a、その結合器3aに順次結合する、シャフト3b、結合器3c、シャフト3d、結合器3e、さらにシャフト3fを備えている。
横向きのシャフト3bは、下側のギヤ31bの側方に位置する液タンク11の側壁に設けられた連通開口11wを通って液タンク11の外部に導出されている。また、液タンク11の側方外部には、結合器3cと縦方向のシャフト3dとを囲むように、水封タンク11Aが設けられている。水封タンク11Aは、液タンク11の内部と連通する連通開口11wと、上方に開口する上部開口11kとを有している。水封タンク11Aには、液体10が入っており、その液面は上部開口11kによって大気圧に開放されている。液タンク11内の液体10の液面と水封タンク11A内の液体10の液面の上下関係は、ガス室15の気体の圧力P2が大気圧ではない場合に、互いに異なる液面レベルとなる。
このエネルギー変換装置1における出力手段3の出力機構30は、水封構造を用いているので、厳密な封止構造を用いることなく、機械的エネルギーをエネルギー変換装置1の外部に取り出すことができる。水封構造は、上側のギヤ31bに対しても、同様に適用できる。
伝達装置30は、これらの結合器3a,3c,3e、およびシャフト3b、3d、3fを介して、液タンク11内で変換生成されるエネルギーを機械的なエネルギーとして、エネルギー変換装置1の外部に取り出し、外部の動作装置33に伝達する。
動作装置33は、揚水機であり、上下のスプロケット33a,33bにかけられたチェーン33cに、複数のバケツ33dを備えて構成されている。エネルギー変換装置1の外部に取り出された回転エネルギーは、シャフト3fを介して、上側のスプロケット33aに回転エネルギーとして伝達される。
このエネルギー変換装置1によれば、圧縮気体の圧力に基づくエネルギーを、機械的エネルギーに変換して出力できるので、その機械的エネルギーをそのまま、動作装置33の機械的動作のエネルギーとして用いることができる。
次に、図4、図5、図6を参照して、液タンク11を複数用いる場合の組み合わせの例を説明する。液タンク11は、ガスボンベ14に対して複数個が並列的または直列的に設けられてもよい。図4に示すエネルギー変換装置1は、ガスボンベ14に対して、互いに同構造の3つの液タンク11を並列的に設置した例を示す。各液タンク11のノズル13には、それぞれバルブ14を介して圧縮気体が送出される。また、各液タンク11のガス室15の気体は、それぞれ三方弁41を介して、サブボンベ40に回収される。並列配置される液タンク11は、互いの同構造のものに限られず、互いに異なる構造のものであってもよく、個数も3つに限られない。
図5に示すエネルギー変換装置1は、ガスボンベ14に対して、互いに同構造の3つの液タンク11を直列的に設置した例を示す。各液タンク11は、同じ水平レベルに配置されている。ガスボンベ14に近い側から、1番目の液タンク11にはバルブ14aを介して圧縮ガスがノズル13に送出されている。その1番目の液タンク11のガス室15から、三方弁41を介して、2番目の液タンク11のノズル13に気体が送出されている。その2番目の液タンク11のガス室15から、三方弁41を介して、3番目の液タンク11のノズル13に気体が送出されている。そして、3番目の液タンク11のガス室15から、気体が、サブボンベ40に回収されている。
バルブ14aと3つの三方弁41は、3つの液タンク11における、上述した圧力P1,PW,P2に相当する圧力を、互いに調整するために用いられる。直列配置される液タンク11は、互いの同構造のものに限られず、互いに異なる構造のものであってもよく、個数も3つに限られない。
図6に示すエネルギー変換装置1は、ガスボンベ14に対して、互いに同構造の2つの液タンク11を直列的に、上下に設置した例を示す。下側の液タンク11のガス室15からの気体は、三方弁41を介して、上側の液タンク11のノズル13に送出されている。その気体を導く配管は、上側の液タンク11の上部レベルまで配管された後、その液タンク11の下まで引き戻されて、ノズル13に接続されている。この配管構造は、上側の液タンクの液体10が、気体の配管を通って、下側の液タンク11に流入するのを防止するための構造である。
また、上下の液タンク11は、水封タンク11Aによって、互いに連通している。この実施形態では、上下の液タンク11からそれぞれ、互いに共通の水封タンク11Aと伝達機構30とを介して、機械的エネルギーを取り出す構成が、実現されている。また、上下の液タンク11は、水封タンク11Aによって互いに連通していることに限られず、上下の液タンク11が互いに独立していてもよい。例えば、図3に示した液タンク11と水封タンク11Aと伝達機構30との組を、上下に直列した態様としてもよく、この場合、上下の液タンク11が、それぞれの水封タンク11Aと伝達機構30とを備える。

この特許をJ-PlatPatで参照する
Flag Counter

関連特許

個人
風力アクチェータ
2か月前
個人
波力エンジン
3日前
個人
砂蓄熱式風力発電装置
2か月前
個人
水力発電システム
1か月前
個人
発電システム
2か月前
株式会社フォトラダ
発電設備
11日前
個人
波力を利用した揚水ポンプの活用
4か月前
株式会社不二越
油圧装置
3か月前
川崎重工業株式会社
液圧回転機械
4か月前
個人
垂直軸型風力発電装置
2か月前
株式会社LEDテクノス
発電装置
3か月前
合同会社小林知財研鑽処
水圧発電装置
1か月前
有限会社丸銀
循環式水槽発電装置
25日前
個人
発電装置、貯留タンクおよび発電方法
10日前
三鷹光器株式会社
垂直軸型風車
1か月前
東洋重機工業株式会社
油圧装置及び草刈り機
24日前
アキシオン株式会社
発電システム及び発電方法
4か月前
個人
潮流の流速を増速させる海中設備及びその利用
1か月前
株式会社ボイアンシー
水中空洞化ハウジング落水発電装置
3か月前
五洋建設株式会社
洋上風力発電装置の組立方法
1か月前
戸田建設株式会社
スパー型洋上風力発電設備の建造方法
2か月前
株式会社チャレナジー
可搬式風車装置
17日前
北菱電興株式会社
オープンクロスフロー水車発電装置
2か月前
トヨタ自動車株式会社
風力発電装置
1か月前
個人
エネルギー変換装置
1か月前
個人
発電システム
2か月前
個人
水力発電装置及び該水力発電装置の応用方法
2か月前
ソフトバンクグループ株式会社
発電システム
17日前
ソフトバンクグループ株式会社
発電システム
17日前
三菱重工業株式会社
制振構造及び塔状構造物
1か月前
株式会社アントレックス
海水力発電装置
4か月前
コベルコ・コンプレッサ株式会社
給水システム及び給水方法
25日前
トヨタ自動車株式会社
水上風力発電制御システム
3か月前
戸田建設株式会社
風車の輸送支援装置及び風車の輸送支援方法
2か月前
株式会社アイティエス
翼車装置
4か月前
国立研究開発法人宇宙航空研究開発機構
発電装置
1か月前
続きを見る