TOP特許意匠商標
特許ウォッチ DM通知 Twitter
10個以上の画像は省略されています。
公開番号2021101520
公報種別公開特許公報(A)
公開日20210708
出願番号2019232805
出願日20191224
発明の名称演算増幅器
出願人新日本無線株式会社
代理人特許業務法人酒井国際特許事務所
主分類H03F 1/52 20060101AFI20210611BHJP(基本電子回路)
要約【課題】演算増幅器の出力位相反転現象の発生を防止し且つ入力換算雑音電圧特性の悪化を防止する。
【解決手段】トランジスタQ1,Q2、第1負荷,第2負荷、電流源I1を有する入力差動回路と、ベースがトランジスタQ1のコレクタに接続されるトランジスタQ3、ベースがトランジスタQ2のコレクタに接続されるトランジスタQ4を含む中間回路と、正転入力端子1とトランジスタQ4のエミッタの間に接続されたダイオードD1と、反転入力端子2とトランジスタ3のエミッタの間に接続されたダイオードD2と、トランジスタQ3、Q4のエミッタ電圧の差分に応じた電圧を出力する出力差動回路6とを備える。
【選択図】図1

特許請求の範囲【請求項1】
ベースが第1入力端子に接続されコレクタが第1負荷を介して第1電源端子に接続されたバイポーラ第1導電型の第1トランジスタ、ベースが第2入力端子に接続されコレクタが第2負荷を介して前記第1電源端子に接続されたバイポーラ第1導電型の第2トランジスタ、前記第1及び第2トランジスタのエミッタと第2電源端子との間に接続された第1電流源を含む入力差動回路と、前記第2トランジスタのコレクタ電圧を第3入力端子に入力し前記第1トランジスタのコレクタ電圧を第4入力端子に入力する出力差動回路と、を備えた演算増幅器において、
ベースが前記第1トランジスタのコレクタに接続されエミッタが前記第4入力端子に接続されるバイポーラ第1導電型の第3トランジスタ、ベースが前記第2トランジスタのコレクタに接続されエミッタが前記第3入力端子に接続されるバイポーラ第1導電型の第4トランジスタを含む中間回路と、
前記第1入力端子と前記第4トランジスタのエミッタの間に接続された第1ダイオードと、
前記第2入力端子と前記第3トランジスタのエミッタの間に接続された第2ダイオードと、
を更に備えていることを特徴とする演算増幅器。
続きを表示(約 520 文字)【請求項2】
請求項1に記載の演算増幅器において、
前記第3及び第4トランジスタのコレクタと前記第1電源端子との間に第3ダイオードが接続されていることを特徴とする演算増幅器。
【請求項3】
請求項1又は2に記載の演算増幅器において、
前記第3トランジスタのエミッタと前記第4入力端子の間に挿入接続されたバイポーラ第2導電型の第5トランジスタと、前記第4トランジスタのエミッタと前記第3入力端子の間に挿入接続されたバイポーラ第2導電型の第6トランジスタを更に備え、
前記第5及び第6トランジスタのベースに共通の電圧が印加されていることを特徴とする演算増幅器。
【請求項4】
請求項3に記載の演算増幅器において、
前記共通の電圧は、通常動作時に前記第1及び第2ダイオードがオンせず、前記第1入力端子に前記第1電源端子の電圧以上の電圧が印加したときに前記第1ダイオードがオンし、前記第2入力端子に前記第1電源端子の電圧以上の電圧が印加したときに前記第2ダイオードがオンするよう、前記第5及び第6トランジスタを制御する電圧に設定されていることを特徴とする演算増幅器。

発明の詳細な説明【技術分野】
【0001】
本発明はバイポーラトランジスタを使用した演算増幅器に関する。
続きを表示(約 6,400 文字)【背景技術】
【0002】
演算増幅器では、入力電圧がバイポーラの入力トランジスタのコレクタ側の電源電圧を大きく超えた場合、その入力トランジスタのベース・コレクタ間の寄生ダイオードを通過する電流が原因で出力電圧が変化して、出力電圧が入力電圧と逆位相になる出力位相反転現象を引き起こす。
【0003】
図2にこのような出力位相反転現象を防止する対策を施していない演算増幅器を示す。1は正転入力端子、2は反転入力端子、3は出力端子、4は電圧がVccの電源端子、5は接地端子、6は出力差動回路である。
【0004】
Q1,Q2はエミッタが電流源I1に共通接続された入力差動回路を構成するNPNトランジスタであり、ベースが正転入力端子1、反転入力端子2に接続され、コレクタと電源端子4の間にそれぞれ負荷としての抵抗R1,R2が接続されている。抵抗R1,R2の抵抗値は同値である。Dbc1はトランジスタQ1のベース・コレクタ間の寄生ダイオード、Dbc2はトランジスタQ2のベース・コレクタ間の寄生ダイオードである。出力差動回路6はトランジスタQ1,Q2のコレクタに現れる電圧V
-IN
,V
+IN
の差分に応じた電圧を出力端子3に出力する。
【0005】
図2の演算増幅器において、正転入力端子1と反転入力端子2にトランジスタQ1,Q2が正常に動作する電圧を印加した場合、出力差動回路6の正転入力端子61の入力電圧V
+IN
,反転入力端子62の入力電圧V
-IN
は、それぞれ式(1)、(2)となる。
ここで、I
CQ1
はトランジスタQ1のコレクタ電流、I
CQ2
はトランジスタQ2のコレクタ電流である。
【0006】
正転入力端子1と反転入力端子2に電圧Vcc/2を印加した場合、電流源I1の電流をI1とすると、トランジスタQ1,Q2には同じコレクタ電流(=I1/2)が流れ、同じ抵抗値である抵抗R1,R2にも同じ電流が流れる。このため、出力差動回路6の入力電圧V
+IN
,V
-IN
は同じ電圧となる。
【0007】
ここで、例えば正転入力端子1の印加電圧を上昇させた場合、トランジスタQ1のコレクタ電流が増加し、トランジスタQ2のコレクタ電流が減少する。このトランジスタQ1のコレクタ電流の増加量とトランジスタQ2のコレクタ電流の減少量は等しくなる。このときの電流の変動分をΔIとすると、出力差動回路6の入力電圧V
+IN
,V
-IN
は、
となる。
【0008】
これにより、V
+IN
>V
-IN
となり、出力差動回路6の出力端子3の電圧は増加する。この動作は図2の演算増幅器としての正常動作である。
【0009】
しかし、正転入力端子1の印加電圧が上昇し、電源電圧Vccよりも更に高い電圧になると、トランジスタQ1の寄生ダイオードDbc1がオンすることで、出力差動回路6の入力電圧V
-IN
が式(6)のように変化する。

INP
は正転入力端子1の電圧である。V
Dbc1
は寄生ダイオードDbc1にかかる電圧であり、0.7V程度である。
【0010】
一方、トランジスタQ2はオフすることで、そのコレクタ電流I
CQ2
はゼロとなり、出力差動回路6の入力電圧V
+IN
は式(7)のように変化する。
ここで
となるまで正転入力端子1の電圧V
INP
が上昇すると、V
+IN
<V
-IN
となり、出力差動回路6の出力端子3の電圧が低下する方向に働いてしまう。これが出力位相反転現象である。
【0011】
そこで、面積の大きいダイオードを用いずに出力位相反転現象の防止対策を施した演算増幅器として、図3に示すように、入力トランジスタQ1,Q2のベースに抵抗R5,R6をそれぞれ直列接続し、正転入力端子1とトランジスタQ2のコレクタとの間にダイオードD4を接続し、反転入力端子2とトランジスタQ1のコレクタとの間にダイオードD5を接続する構成がある(特許文献1)。
【0012】
この図3の演算増幅器では、例えば正転入力端子1の電圧が電源電圧Vccよりも高くなったとき、正転入力端子1→ダイオードD4→抵抗R2を経由して電源端子4に流れる電流により発生する入力電圧V
+IN
が、正転入力端子1→抵抗R5→寄生ダイオードDbc1→抵抗R1を経由して電源端子4に流れる電流により発生する電圧V
-IN
よりも高くなるように、抵抗R5の値を設定することにより、V
+IN
>V
-IN
にすることができるので、このときの出力位相反転現象の発生を防止することができる。
【0013】
また、反転入力端子2の電圧が電源電圧Vccよりも高くなったとき、反転入力端子2→ダイオードD5→抵抗R1を経由して電源端子4に流れる電流により発生する電圧V
-IN
が、反転入力端子2→抵抗R6→寄生ダイオードDbc2→抵抗R2を経由して電源端子4に流れる電流により発生する電圧V
+IN
よりも高くなるように、抵抗R6の値を設定することにより、V
+IN
<V
-IN
にすることができるので、このときの出力位相反転現象の発生を防止することができる。
【先行技術文献】
【特許文献】
【0014】
特開2010−28311号公報
【発明の概要】
【発明が解決しようとする課題】
【0015】
ところが、図3に示す演算増幅器では、正転入力端子1に入力する過大電圧を抵抗R1とで分圧するための抵抗R5をトランジスタQ1のベースに直列接続し、反転入力端子2に入力する過大電圧を抵抗R2とで分圧するための抵抗R6をトランジスタQ2のベースに直列接続する必要があるため、それらの抵抗R5,R6が常時接続されることになり、通常動作時でも、それらの抵抗R5,R6が発生する熱雑音によって、演算増幅器全体の入力換算雑音電圧特性が悪化してしまうという問題がある。
【0016】
本発明の目的は、出力位相反転現象の発生を防止し且つ演算増幅器全体の入力換算雑音電圧特性の悪化を防止した演算増幅器を提供することである。
【課題を解決するための手段】
【0017】
上記目的を達成するために、請求項1にかかる発明は、ベースが第1入力端子に接続されコレクタが第1負荷を介して第1電源端子に接続されたバイポーラ第1導電型の第1トランジスタ、ベースが第2入力端子に接続されコレクタが第2負荷を介して前記第1電源端子に接続されたバイポーラ第1導電型の第2トランジスタ、前記第1及び第2トランジスタのエミッタと第2電源端子との間に接続された第1電流源を含む入力差動回路と、前記第2トランジスタのコレクタ電圧を第3入力端子に入力し前記第1トランジスタのコレクタ電圧を第4入力端子に入力する出力差動回路と、を備えた演算増幅器において、ベースが前記第1トランジスタのコレクタに接続されエミッタが前記第4入力端子に接続されるバイポーラ第1導電型の第3トランジスタ、ベースが前記第2トランジスタのコレクタに接続されエミッタが前記第3入力端子に接続されるバイポーラ第1導電型の第4トランジスタを含む中間回路と、前記第1入力端子と前記第4トランジスタのエミッタの間に接続された第1ダイオードと、前記第2入力端子と前記第3トランジスタのエミッタの間に接続された第2ダイオードと、を更に備えていることを特徴とする。
【0018】
請求項2にかかる発明は、請求項1に記載の演算増幅器において、前記第3及び第4トランジスタのコレクタと前記第1電源端子との間に第3ダイオードが接続されていることを特徴とする。
【0019】
請求項3にかかる発明は、請求項1又は2に記載の演算増幅器において、前記第3トランジスタのエミッタと前記第4入力端子の間に挿入接続されたバイポーラ第2導電型の第5トランジスタと、前記第4トランジスタのエミッタと前記第3入力端子の間に挿入接続されたバイポーラ第2導電型の第6トランジスタを更に備え、前記第5及び第6トランジスタのベースに共通の電圧が印加されていることを特徴とする。
【0020】
請求項4にかかる発明は、請求項3に記載の演算増幅器において、前記共通の電圧は、通常動作時に前記第1及び第2ダイオードがオンせず、前記第1入力端子に前記第1電源端子の電圧以上の電圧が印加したときに前記第1ダイオードがオンし、前記第2入力端子に前記第1電源端子の電圧以上の電圧が印加したときに前記第2ダイオードがオンするよう、前記第5及び第6トランジスタを制御する電圧に設定されていることを特徴とする。
【発明の効果】
【0021】
本発明によれば、第1入力端子又は第2入力端子に電源電圧以上の電圧が入力したときに、第1又は第2ダイオードを経由する電流により発生する電圧は、そのまま出力差動回路の一方の入力端子に入力するが、入力差動回路の第1又は第2トランジスタの寄生ダイオードを経由する電流により発生する電圧は、中間回路の第3又は第4トランジスタのベース・エミッタ間電圧分だけ低くなって出力差動回路の他方の入力端子に入力するので、出力位相反転現象の発生を防止することができる。また、第1及び第2トランジスタのベースに抵抗を直列接続する必要がないため、出力位相反転現象防止対策が施されていない場合と同等の入力換算雑音電圧特性を有する演算増幅器を得ることができる。
【図面の簡単な説明】
【0022】
本発明の実施例の演算増幅器の回路図である。
従来の演算増幅器の回路図である。
出力位相反転現象防止対策が施された従来の演算増幅器の回路図である。
図2の演算増幅器に1倍の閉ループとなる帰還を掛けて一方の入力端子に電源電圧以上の振幅のサイン波を入力したときの出力電圧のシミュレーション結果を示す波形図である。
図1の演算増幅器に1倍の閉ループとなる帰還を掛けて一方の入力端子に電源電圧以上の振幅のサイン波を入力したときの出力電圧のシミュレーション結果を示す波形図である。
【発明を実施するための形態】
【0023】
図1に本発明の演算増幅器の一実施例の回路を示す。1は正転入力端子(請求項の第1入力端子)、2は反転入力端子(請求項の第2入力端子)、3は出力端子、4は電圧Vccの電源端子、5は接地端子、6は出力差動回路,61は出力差動回路の正転入力端子(請求項の第3入力端子)、62は反転入力端子(請求項の第4入力端子)である。
【0024】
Q1,Q2はエミッタが電流源I1に共通接続された入力差動回路を構成するNPNトランジスタであり、ベースが正転入力端子1、反転入力端子2に接続され、コレクタと電源端子4の間にそれぞれ負荷としての抵抗R1,R2が接続されている。抵抗R1,R2の抵抗値は同値である。Dbc1はトランジスタQ1のベース・コレクタ間の寄生ダイオード、Dbc2はトランジスタQ2のベース・コレクタ間の寄生ダイオードである。
【0025】
Q3,Q4はコレクタがダイオードD3に共通接続され中間回路を構成するNPNトランジスタであり、ベースがトランジスタQ1,Q2のコレクタに接続され、エミッタがPNPトランジスタQ5,Q6と負荷としての抵抗R3,R4を介して接地端子5に接続されている。抵抗R3,R4の抵抗値は同値である。トランジスタQ5,Q6はバッファ回路を構成するトランジスタであり、ベースに固定電圧Vaが印加されている。D1は正転入力端子1とトランジスタQ4のエミッタ間に接続されたダイオード、D2は反転入力端子2とトランジスタQ3のエミッタ間に接続されたダイオードである。出力差動回路6は、トランジスタQ3,Q4のエミッタ電圧、つまり抵抗R3,R4に生じる電圧V
-IN
,V
+IN
の差分に対応した電圧を出力端子3から出力する。
【0026】
ここで、トランジスタQ1,Q2が正常に動作する入力電圧範囲において、正転入力端子1に高い電圧を印加し、反転入力端子2に低い電圧を印加した場合のトランジスタQ1のコレクタ電流とトランジスタQ2のコレクタ電流の変動分をΔIとすると、トランジスタQ3,Q4のベース電圧V
BQ3
、V
BQ4
はそれぞれ式(9),(10)で表される。
従って、V
BQ3
<V
BQ4
となる。
【0027】
また、トランジスタQ3,Q4のエミッタ電圧V
EQ3
,V
EQ4
は、それらのトランジスタQ3,Q4のベース電圧V
BQ3
、V
BQ4
からベース・エミッタ間電圧分だけ低下した電圧となる。トランジスタQ3のベース・エミッタ間電圧をV
BEQ3
とし、トランジスタQ4のベース・エミッタ間電圧をV
BEQ4
とするとき、V
BEQ3
≒V
BEQ4
≒V
BE
とすると、エミッタ電圧V
EQ3
,V
EQ4
は、
となり、V
EQ3
<V
EQ4
となる。
【0028】
このエミッタ電圧V
EQ3
,V
EQ4
の大小関係は、トランジスタQ5,Q6を介して出力差動回路6の正転入力端子61、反転入力端子62にそのまま印加されるため、V
+IN
>V
-IN
となり、出力差動回路6の出力端子3の電圧は増加する方向に働く。以上が図1の演算増幅器の正常動作である。
【0029】
ここで、正転入力端子1の電圧V
INP
が寄生ダイオードDbc1がオンするまで上昇した場合、トランジスタQ3のベース電圧V
BQ3
は、
となる。トランジスタQ3のエミッタ電圧V
EQ3
は式(11)と同様であるので、
となる。
【0030】
一方、ダイオードD1がオンするので、トランジスタQ4のエミッタ電圧V
EQ4
は、そのダイオードD1にかかる電圧をV
D1
とすると、
となる。
(【0031】以降は省略されています)

この特許をJ-PlatPatで参照する

関連特許

新日本無線株式会社
聴診器
新日本無線株式会社
聴診器
新日本無線株式会社
増幅装置
新日本無線株式会社
増幅装置
新日本無線株式会社
定電流回路
新日本無線株式会社
演算増幅器
新日本無線株式会社
給電システム
新日本無線株式会社
MEMS素子
新日本無線株式会社
入力保護回路
新日本無線株式会社
リミッタ回路
新日本無線株式会社
半導体集積回路
新日本無線株式会社
スイッチング電源
新日本無線株式会社
高周波スイッチ回路
新日本無線株式会社
高周波スイッチ回路
新日本無線株式会社
半導体装置の設計方法
新日本無線株式会社
スイッチング電源装置
新日本無線株式会社
スイッチング電源装置
新日本無線株式会社
スイッチング電源装置
新日本無線株式会社
デルタシグマADC回路
新日本無線株式会社
ゲート駆動回路用電源回路
新日本無線株式会社
炭化珪素半導体装置の製造方法
新日本無線株式会社
電源制御回路及び低電力デバイス
新日本無線株式会社
物標検知装置、システム、プログラム及び方法
新日本無線株式会社
距離計算装置、距離測定システム、距離計算プログラム及び距離計算方法
新日本無線株式会社
振動検知装置、振動検知システム、振動検知プログラム及び振動検知方法
株式会社大真空
圧電デバイス
株式会社大真空
発振装置
キーコム株式会社
伝送システム
日本電波工業株式会社
水晶振動子
日本電波工業株式会社
水晶振動子
株式会社大真空
圧電発振器
株式会社大真空
圧電発振器
エイブリック株式会社
差動増幅器
株式会社大真空
圧電発振器
ヤマハ株式会社
D級増幅器
日本電波工業株式会社
水晶振動子
続きを見る