TOP特許意匠商標
特許ウォッチ DM通知 Twitter
公開番号2020099159
公報種別公開特許公報(A)
公開日20200625
出願番号2018237355
出願日20181219
発明の名称モータ装置、モータ制御装置及び弁装置
出願人株式会社デンソー
代理人個人,個人
主分類H02P 29/00 20160101AFI20200529BHJP(電力の発電,変換,配電)
要約【課題】駆動伝達経路上に用いた磁気継手の駆動側及び従動側の各回転体間の位相ずれを好適に検出し、モータの駆動制御を行うことを可能としたモータ装置を提供する。
【解決手段】磁気継手44の駆動側回転体である内側転動ギヤ63と従動側回転体である出力側回転体65との間の位相ずれをこれと相関を有する電動モータ42の駆動電流から検出し、位相ずれの検出を含めて電動モータ42の駆動制御を行うようにした。つまり、磁気継手44の位相ずれの検出をモータ制御上必須である電動モータ42の駆動電流から検出することで、磁気継手44の各回転体の回転位置を検出する回転検出センサ等が不要となる。
【選択図】図2
特許請求の範囲【請求項1】
駆動電流(Im)の供給に基づいて回転駆動するモータ(42)と、
前記モータ側の駆動側回転体(63)と負荷側の従動側回転体(65)とを非接触で磁気的連結し、前記モータ側から負荷側に駆動伝達する磁気継手(44)と、
前記モータに供給する前記駆動電流の検出に基づき、前記駆動電流を通じて前記モータの駆動制御を行う制御装置(45,101,102)とを備えるモータ装置(32)であって、
前記制御装置は、前記駆動電流を検出する電流検出部(103)を含み、前記駆動電流と相関を有する前記磁気継手の前記駆動側回転体と前記従動側回転体との位相ずれ(Δθ)をも前記駆動電流から検出し、前記位相ずれの検出を含めた前記モータの駆動制御を行うように構成された、モータ装置。
続きを表示(約 1,300 文字)【請求項2】
前記モータと前記磁気継手との間の駆動伝達経路上に減速機構(43)を備え、
前記減速機構は、外側環状ギヤ(62)と、前記外側環状ギヤの内側に配置され、前記外側環状ギヤと噛み合った状態で前記モータの駆動による公転に伴って自転する内側転動ギヤ(63)とを含み、
前記磁気継手は、前記内側転動ギヤが前記駆動側回転体として機能するとともに、前記内側転動ギヤの公転軸心(L1)周りに回転可能に支持され、前記駆動側回転体と非接触で磁気的連結する出力側回転体(65)が前記従動側回転体として機能するように構成された、請求項1に記載のモータ装置。
【請求項3】
前記磁気継手の前記駆動側回転体と前記従動側回転体との間は、前記駆動側回転体を含む前記モータ側の第1収容空間(69)と、前記従動側回転体を含む負荷側の第2収容空間(31f)とが互いに連通しないように仕切部材(34)にて仕切られて構成された、請求項1又は2に記載のモータ装置。
【請求項4】
駆動電流(Im)の供給に基づいて回転駆動するモータ(42)と、前記モータ側の駆動側回転体(63)と負荷側の従動側回転体(65)とを非接触で磁気的連結し、前記モータ側から負荷側に駆動伝達する磁気継手(44)とを含むモータ装置(32)に対し、
前記モータに供給する前記駆動電流の検出に基づき、前記駆動電流を通じて前記モータの駆動制御を行うモータ制御装置(45,101,102)であって、
前記駆動電流を検出する電流検出部(103)を含み、前記駆動電流と相関を有する前記磁気継手の前記駆動側回転体と前記従動側回転体との位相ずれ(Δθ)をも前記駆動電流から検出し、前記位相ずれの検出を含めた前記モータの駆動制御を行うように構成された、モータ制御装置。
【請求項5】
駆動電流(Im)の供給に基づいて回転駆動するモータ(42)と、前記モータ側の駆動側回転体(63)と負荷側の従動側回転体(65)とを非接触で磁気的連結し、前記モータ側から負荷側に駆動伝達する磁気継手(44)と、前記モータに供給する前記駆動電流の検出に基づき、前記駆動電流を通じて前記モータの駆動制御を行う制御装置(45,101,102)とを備えるモータ装置(32)と、
冷凍サイクル装置(10)の冷媒循環回路(13)に設けられ、前記磁気継手を経て出力される駆動力に基づいて駆動される弁(18)と
を備え、前記制御装置による前記駆動電流を通じての前記モータの駆動制御にて前記弁の制御を行う弁装置(30)であって、
前記制御装置は、前記駆動電流を検出する電流検出部(103)を含み、前記駆動電流と相関を有する前記磁気継手の前記駆動側回転体と前記従動側回転体との位相ずれ(Δθ)をも前記駆動電流から検出し、前記位相ずれの検出を含めた前記モータの駆動制御を行うように構成された、弁装置。
【請求項6】
前記冷凍サイクル装置は、車両の空気調和機に搭載される冷凍サイクル装置である、請求項5に記載の弁装置。

発明の詳細な説明【技術分野】
【0001】
本発明は、モータ装置、モータ制御装置及び弁装置に関する。
続きを表示(約 13,000 文字)【背景技術】
【0002】
駆動源に電動モータを用いるモータ装置において、モータ装置の出力部に駆動側及び従動側の各回転体を互いに非接触で駆動連結する磁気継手(いわゆるマグネットカップリング)を備えるものがある。磁気継手は、駆動側及び従動側の各回転体にそれぞれ磁石を有し、互いの磁気吸引力による連結にて駆動側及び従動側の各回転体が連れ回りするものである(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
特開2014−125991号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、磁気継手においては、駆動側及び従動側の各回転体の磁気連結であることから駆動伝達の際に各回転体間で位相ずれを伴うが、想定以上に各回転体間に位相ずれが生じたり、状況によっては脱調したりする懸念がある。そのため、駆動側及び従動側の各回転体の回転位置を検出する回転検出センサをそれぞれの回転体に対して設置し、各回転体間の位相ずれを検出し、モータの駆動制御に反映することが行われている。
【0005】
しかしながら、駆動側及び従動側の各回転体に対して回転検出センサをそれぞれ設置することは、部品点数や組付工数、設置スペース等、煩雑な問題が生じる。
本発明は、上記課題を解決するためになされたものであって、その目的は、駆動伝達経路上に用いた磁気継手の駆動側及び従動側の各回転体間の位相ずれを好適に検出し、モータの駆動制御を行うことを可能としたモータ装置、モータ制御装置及び弁装置を提供することにある。
【課題を解決するための手段】
【0006】
上記課題を解決するモータ装置は、駆動電流(Im)の供給に基づいて回転駆動するモータ(42)と、前記モータ側の駆動側回転体(63)と負荷側の従動側回転体(65)とを非接触で磁気的連結し、前記モータ側から負荷側に駆動伝達する磁気継手(44)と、前記モータに供給する前記駆動電流の検出に基づき、前記駆動電流を通じて前記モータの駆動制御を行う制御装置(45,101,102)とを備えるモータ装置(32)であって、前記制御装置は、前記駆動電流を検出する電流検出部(103)を含み、前記駆動電流と相関を有する前記磁気継手の前記駆動側回転体と前記従動側回転体との位相ずれ(Δθ)をも前記駆動電流から検出し、前記位相ずれの検出を含めた前記モータの駆動制御を行うように構成された。
【0007】
上記課題を解決するモータ制御装置は、駆動電流(Im)の供給に基づいて回転駆動するモータ(42)と、前記モータ側の駆動側回転体(63)と負荷側の従動側回転体(65)とを非接触で磁気的連結し、前記モータ側から負荷側に駆動伝達する磁気継手(44)とを含むモータ装置(32)に対し、前記モータに供給する前記駆動電流の検出に基づき、前記駆動電流を通じて前記モータの駆動制御を行うモータ制御装置(45,101,102)であって、前記駆動電流を検出する電流検出部(103)を含み、前記駆動電流と相関を有する前記磁気継手の前記駆動側回転体と前記従動側回転体との位相ずれ(Δθ)をも前記駆動電流から検出し、前記位相ずれの検出を含めた前記モータの駆動制御を行うように構成された。
【0008】
上記課題を解決する弁装置は、駆動電流(Im)の供給に基づいて回転駆動するモータ(42)と、前記モータ側の駆動側回転体(63)と負荷側の従動側回転体(65)とを非接触で磁気的連結し、前記モータ側から負荷側に駆動伝達する磁気継手(44)と、前記モータに供給する前記駆動電流の検出に基づき、前記駆動電流を通じて前記モータの駆動制御を行う制御装置(45,101,102)とを備えるモータ装置(32)と、冷凍サイクル装置(10)の冷媒循環回路(13)に設けられ、前記磁気継手を経て出力される駆動力に基づいて駆動される弁(18)とを備え、前記制御装置による前記駆動電流を通じての前記モータの駆動制御にて前記弁の制御を行う弁装置(30)であって、前記制御装置は、前記駆動電流を検出する電流検出部(103)を含み、前記駆動電流と相関を有する前記磁気継手の前記駆動側回転体と前記従動側回転体との位相ずれ(Δθ)をも前記駆動電流から検出し、前記位相ずれの検出を含めた前記モータの駆動制御を行うように構成された。
【0009】
上記各態様によれば、磁気継手の駆動側及び従動側の各回転体間の位相ずれがこれと相関を有するモータの駆動電流から検出され、位相ずれの検出を含めてモータの駆動制御が行われる。つまり、磁気継手の位相ずれの検出がモータ制御上必須であるモータの駆動電流から好適に検出でき、磁気継手の各回転体の回転位置を検出する回転検出センサ等が不要な構成にて実現可能である。
【図面の簡単な説明】
【0010】
一実施形態の弁装置を備える冷凍サイクル装置を示す概略構成図。
弁装置の概略構成を示す断面図であり、(a)は弁装置全体を示す断面図、(b)は(a)のI−I断面図。
モータ、減速機構及び磁気継手を含むモータ装置の詳細構成を示す断面図。
減速機構及び磁気継手を示す構成図であり、(a)は減速機構及び磁気継手の駆動側を説明するための構成図、(b)は磁気継手の従動側を説明するための構成図。
モータ装置の電気的構成を示すブロック図。
磁気継手の位相ずれとモータの駆動電流との相関を示す説明図。
【発明を実施するための形態】
【0011】
以下、弁装置の一実施形態について説明する。
図1に示す本実施形態の冷凍サイクル装置10は、ヒートポンプサイクル装置であって、ハイブリッド車やEV車等の電動車両の空気調和機に用いられる。空気調和機は、エバポレータ11にて冷却した空気を車室内に送風する冷房モードと、ヒータコア12にて加温した空気を車室内に送風する暖房モードとが切替え可能に構成されている。すなわち、冷凍サイクル装置10の冷媒循環回路13は、冷房モードに対応した循環回路である冷房循環経路βと、暖房モードに対応した循環回路である暖房循環経路αとが切替え可能に構成されている。なお、冷凍サイクル装置10の冷媒循環回路13に流通させる冷媒としては、例えばHFC系冷媒やHFO系冷媒を用いることができる。また、冷媒には、コンプレッサ15の潤滑用のオイルが含まれることが好ましい。
【0012】
冷凍サイクル装置10は、冷媒循環回路13において、上記エバポレータ11の他、コンプレッサ15と、水冷コンデンサ16と、熱交換器17と、膨張弁18(後述の膨張弁装置30に含む)とを備える。
【0013】
コンプレッサ15は、気相冷媒を吸引して圧縮し、この圧縮にて高温高圧とした気相冷媒を水冷コンデンサ16側に吐出する電動式の圧縮機である。コンプレッサ15から吐出された高温高圧の気相冷媒は、水冷コンデンサ16に流入する。コンプレッサ15の圧縮機構としては、スクロール型圧縮機構やベーン型圧縮機構等の各種の圧縮機構を用いることができる。また、コンプレッサ15は、冷媒吐出能力が制御されるようになっている。
【0014】
水冷コンデンサ16は、冷媒循環回路13に設けられた第1熱交換部16aと、この冷媒系とは別の冷却水系の冷却水循環回路14上に設けられた第2熱交換部16bとを一体的に備え、第1熱交換部16aと第2熱交換部16bとの間で熱交換を行う熱交換器である。なお、冷却水循環回路14上には、上記ヒータコア12が設けられている。水冷コンデンサ16は、第1熱交換部16a内を流れる気相冷媒と第2熱交換部16b内を流れる冷却水との間で熱交換させる。すなわち、水冷コンデンサ16では、第1熱交換部16a内の気相冷媒の熱によって第2熱交換部16b内の冷却水が加熱される一方、第1熱交換部16a内の気相冷媒が冷却されるようになっている。水冷コンデンサ16の第1熱交換部16aを通過した気相冷媒は、熱交換器17に流入する。
【0015】
熱交換器17は、車両前方側に配置されて、熱交換器17の内部を流通する冷媒と外気との間で熱交換を行う。熱交換器17は、第1熱交換部21と、過冷却器として機能する第2熱交換部22とを一体的に備える。第1及び第2熱交換部21,22には、貯液器23が連結されている。貯液器23には、統合弁装置24が組付けられている。第1熱交換部21の流入路21a及び流出路21bは、統合弁装置24と連通されている。また、第2熱交換部22の流入路22aは、貯液器23及び統合弁装置24と連通されている。
【0016】
第1熱交換部21は、内部に流通する冷媒の温度に応じて選択的に凝縮器及び蒸発器として機能する。貯液器23は、気相冷媒と液相冷媒とを分離し、この分離した液相冷媒を貯留する。第2熱交換部22は、貯液器23から流入した液相冷媒と外気との間の熱交換を行うことで液相冷媒を更に冷却して冷媒の過冷却度を高め、熱交換後の冷媒を膨張弁18側に供給可能とする。
【0017】
統合弁装置24は、貯液器23内に配置される弁本体部25と、弁本体部25を駆動させるための駆動源である電動モータ26とを備える電動式の弁装置である。電動モータ26の一例は、ステッピングモータである。統合弁装置24は、暖房モード時において、水冷コンデンサ16の第1熱交換部16aと第1熱交換部21の流入路21aとを連通させるとともに、第1熱交換部21の流出路21bを直接的にコンプレッサ15と連通させる。したがって、暖房モード時には、暖房循環経路αを通じた冷媒の循環が行われるようになる。また、統合弁装置24は、冷房モード時において、水冷コンデンサ16の第1熱交換部16aと第1熱交換部21の流入路21aとを連通させるとともに、流出路21bを第2熱交換部22の流入路22aと連通させ、第2熱交換部22を膨張弁18及びエバポレータ11を介してコンプレッサ15と連通させる。したがって、冷房モード時には、冷房循環経路βを通じた冷媒の循環が行われるようになる。停止時における統合弁装置24は、いずれの流路も閉弁状態とする。すなわち、統合弁装置24は、電動モータ26の駆動により弁本体部25を動作させて、停止、暖房モード及び冷房モードの各状態に合った動作の切替えを行っている。
【0018】
膨張弁18は、熱交換器17から供給された液相冷媒を減圧膨張させる弁であり、弁本体部である膨張弁18を含む電動式の弁装置(以下、「膨張弁装置30」という)として一体的に構成されている。膨張弁装置30は、膨張弁18を駆動させるための駆動源である電動モータ42を備える(図2及び図3参照)。膨張弁18は、低温高圧状態の液相冷媒を減圧してエバポレータ11に供給する。
【0019】
エバポレータ11は、冷房モード時において送風空気を冷却する蒸発器として機能する熱交換器である。膨張弁18からエバポレータ11に供給された液相冷媒は、エバポレータ11周辺の空気と熱交換を行う。この熱交換によってエバポレータ11内の液相冷媒が気化し、エバポレータ11の周辺空気が冷却される。その後、エバポレータ11内で気化した気相冷媒は、コンプレッサ15にて吸引されて再び圧縮される。
【0020】
次に、本実施形態の膨張弁装置30について説明する。
図2(a)及び図2(b)に示すように、膨張弁装置30は、基台ブロック31内に構成される膨張弁18と、基台ブロック31に対して固定されて膨張弁18を駆動する駆動装置32とを備える。
【0021】
膨張弁装置30の基台ブロック31は、第2熱交換部22側からエバポレータ11側に冷媒を流入させる流入路31aと、エバポレータ11側からコンプレッサ15に冷媒を流出させる流出路31bとを備えている。流入路31a及び流出路31bは、大凡互いに平行に延びる断面円形の通路形状をなしている。基台ブロック31の形状の一例は、直方体である。駆動装置32が固定される一面を上面31xとした場合、流入路31a及び流出路31bは、一方側の側面31y1からその反対側の側面31y2に向けて貫通して形成されている(流入路31a側のみ図2(b)にて図示)。なお、以下の説明では、基台ブロック31側が膨張弁装置30の下側、駆動装置32側が膨張弁装置30の上側とする。
【0022】
基台ブロック31には、流入路31aの延びる方向と直交する上下方向に延びる縦通路31cが流入路31aの途中に設けられている。基台ブロック31には、縦通路31cの上側と連通する、弁体33を収容する弁収容空間として機能する弁収容穴31dが設けられている。弁収容穴31dの断面形状は、円形である。弁収容穴31d内には、弁体33が収容されている。弁体33は、下方に向けられた先端部33aが尖った針状のニードル弁である。膨張弁18は、弁体33が上下方向に沿って進退することで、先端部33aが縦通路31cの開口部31c1を開閉し、流入路31a側の冷媒の流通を許容又は遮断し、更にはその流量を調整する。
【0023】
弁体33は、上記先端部33aの他、中間部に雄ネジ部33bと、基端部に磁気継手44を構成する出力側回転体65と連結するための連結部33cとを備える。雄ネジ部33bは、弁収容穴31dの内周面に形成された雌ネジ部31eと螺合し、弁体33自身の回転を弁体33の軸方向、すなわち上下方向への直動動作に変換する。連結部33cは、出力側回転体65からの回転動作を弁体33に伝達し、弁体33の直動動作が可能となるように出力側回転体65と連結する。なお、出力側回転体65は、弁収容穴31dの上端と連通する回転体収容凹部31fに収容されている。
【0024】
基台ブロック31の上面31xには、出力側回転体65を収容した状態での回転体収容凹部31fの開口部31gを閉塞するための閉塞板34が固定されている。閉塞板34は、非磁性金属製(例えばSUS製)で平板形状をなしている。閉塞板34と基台ブロック31の上面31xとの間には、開口部31gの周囲を囲む態様の環状溝31hに装着される環状のシール部材35が介在されている。つまり、閉塞板34とシール部材35とによって基台ブロック31の開口部31gは液密に閉塞され、基台ブロック31から駆動装置32側等の外部に冷媒が漏出しないように封止されている。
【0025】
駆動装置32は、一部が閉塞板34を介在する態様にて基台ブロック31の上面31xに図示略の取付ネジにて固定されている。なお、厳密には、駆動装置32を構成する磁気継手44の出力側回転体65は、閉塞板34から弁体33側の取付けとなる。駆動装置32は、上面に開口部40aを有するハウジング40と、ハウジング40の開口部40aを閉塞するカバー41とを備える。ハウジング40の内部には、電動モータ42と、減速機構43と、減速機構43の出力部として機能する磁気継手44と、制御回路基板45と、温度圧力検出体46とが収容されている。駆動装置32は、電動モータ42を駆動源とするモータ装置である。
【0026】
図2(a)、図2(b)及び図3に示すように、駆動装置32内の電動モータ42、減速機構43及び磁気継手44は、膨張弁18の弁体33よりも上方において上下方向に並ぶようにして配置され、これらの内で最も上側に電動モータ42が配置されている。なお、図2は、電動モータ42、減速機構43及び磁気継手44の構成を概略的に示しているのに対し、図3は、それらの詳細な構成を示している。そのため、図2において誇張又は簡略化している部分があるため、同部材であっても図3と形状等で相違する場合がある。
【0027】
図3に示すように、本実施形態の電動モータ42は、ステッピングモータにて構成されている。電動モータ42は、下底が開口する有底円筒状のモータケース50の内周面に対し、上下方向でもある軸方向に積層する態様をなして固定される二相駆動用のステータ51a,51bを備える。ステータ51a,51bは、ともに円環状をなして内周部に爪状磁極(クローポール)51xを有し、更に内側にロータ52が回転可能に収容されている。
【0028】
ロータ52は、回転軸53と、回転軸53に固定されるロータ本体部54と、ロータ本体部54の外周面に固定される界磁用磁石55とを備え、これらは一体的に回転するように構成されている。回転軸53の上端部はモータケース50の底部中央に設けた軸受56にて軸支されるとともに、回転軸53の下端部は上記閉塞板34に設けた軸受57にて軸支され、回転軸53は膨張弁18の弁体33と同軸心上に位置している。つまり、回転軸53の中心軸心と弁体33の中心軸心とが基準軸心L1上となる配置としている(図2参照)。なお、回転軸53の下端部を軸支する軸受57部分における閉塞板34には開口が形成されず、閉塞板34による液密な仕切り構造は維持されている。
【0029】
また、ロータ52のロータ本体部54は、細長な円柱形状をなしてモータケース50よりも軸方向に若干長く、モータケース50の下端の開口部50aよりも下方に突出している。界磁用磁石55は、軸方向に積層されるステータ51a,51bと軸方向における長さが同じであり、ステータ51a,51bの爪状磁極51xと径方向に間隔を有して対向する。そして、ステータ51a,51bのコイル51yに通電がなされると爪状磁極51xにおいて周方向に回転磁界が生じ、界磁用磁石55との間の吸引力や反発力を受けてロータ52が回転するようになっている。
【0030】
モータケース50は、下端の開口部50aに支持部材58の環状凸部58aが内嵌した状態で支持部材58により支持されている。支持部材58は、環状凸部58aの下端部から径方向外側にフランジ状に延びるベース部58bを有している。ベース部58bは、固定ブロック59の上面に載置されている。ベース部58bは、同ベース部58bの上面側から固定ブロック59及び閉塞板34を介して基台ブロック31に挿通された取付ネジ60によって基台ブロック31に締付け固定されている。これにより、基台ブロック31に対する電動モータ42の固定が行われ、電動モータ42の固定とともに閉塞板34の固定も行われる。
【0031】
ロータ52は、ロータ本体部54の下端部に偏心軸部61を一体的に備えている。偏心軸部61は、基準軸心L1から径方向にオフセットした偏心軸心L2を中心軸心とし、偏心軸心L2を中心とした円柱状に構成されている。偏心軸部61の中心軸心である偏心軸心L2の基準軸心L1からの偏心量D1は、減速機構43の外側環状ギヤ62の内歯62a(又は内側転動ギヤ63の外歯63a)の高さD2の略1/2に相当する。偏心軸部61は、電動モータ42(ロータ52)にて生じる回転駆動力を減速機構43に入力する。
【0032】
図3、図4(a)及び図4(b)に示すように、本実施形態の減速機構43は、サイクロイド減速機にて構成されている。減速機構43は、不動とされた固定ブロック59に一体的に形成される円環状の外側環状ギヤ62と、外側環状ギヤ62の内径よりも外径が小さく歯数が少ない円板状の内側転動ギヤ63とを備え、外側環状ギヤ62の内側で内側転動ギヤ63が噛み合って公転かつ自転することで減速されるギヤ構成となっている。本実施形態の減速機構43は、外側環状ギヤ62の内周部に設けた内歯62aの数が「33」、内側転動ギヤ63の外周部に設けた外歯63aの数が外側環状ギヤ62の歯数よりも1つ少ない「32」に設定され、減速比は「32:1」に設定されている。内側転動ギヤ63の32回転の公転が1回転の自転に減速変換される。減速比「32:1」は一例である。
【0033】
減速機構43の外側環状ギヤ62及び内側転動ギヤ63と、回転軸53、偏心軸部61及び弁体33との配置関係において、外側環状ギヤ62については、自身の中心軸心が回転軸53及び弁体33の中心軸心と同様に基準軸心L1上となる配置としている。一方、内側転動ギヤ63は、中心部に設けた連結筒部63bがボール軸受64を介して偏心軸部61に固定され、偏心軸部61に対して相対回転可能に連結している(図3参照)。内側転動ギヤ63については、自身の中心軸心が偏心軸部61の中心軸心と同様に偏心軸心L2上となる配置、すなわち基準軸心L1とは偏心した位置での配置となっている。また、連結筒部63bの内側には、偏心軸部61から下方に突出する回転軸53の下端部が挿通している。
【0034】
このような減速機構43は、電動モータ42による偏心軸部61の回転駆動の入力に基づいて内側転動ギヤ63が基準軸心L1周りに公転すると、偏心軸部61に対してボール軸受64にて支持される内側転動ギヤ63が偏心軸心L2周りに自転し、この内側転動ギヤ63の自転が自身の公転よりも十分に減速されたものとなる。そして、内側転動ギヤ63の自転、すなわち減速機構43の減速出力は、減速機構43の出力部を構成する磁気継手44を介して取り出される。
【0035】
磁気継手44は、駆動側回転体として機能する内側転動ギヤ63と、従動側回転体として機能する出力側回転体65とを備える。本実施形態では、減速機構43の内側転動ギヤ63が磁気継手44の駆動側回転体としても機能し、部品として一体的に構成されている。内側転動ギヤ63と出力側回転体65とは、互いに離間して非接触状態で磁気的に連結し、内側転動ギヤ63の回転に伴って出力側回転体65が連回りする。
【0036】
内側転動ギヤ63は、下面において、一定の所定幅Wをする円環状の永久磁石よりなる連結用磁石66が取り付けられている。連結用磁石66は、自身の中心軸心が内側転動ギヤ63の中心軸心と同様に偏心軸心L2上となる配置としている。すなわち、連結用磁石66についても内側転動ギヤ63と同様、基準軸心L1とは偏心した位置での配置となっている。連結用磁石66は、内側転動ギヤ63の下面の取付溝63c内に収容されて、連結用磁石66の下面と内側転動ギヤ63の下面とが面一をなしている。連結用磁石66は、周方向等角度間隔で例えば10極の磁極部66aを有している。
【0037】
出力側回転体65は、円板状をなす回転体本体65aと、回転体本体65aの下面中央部にて下方に突出する連結筒部65bとを備え、連結筒部65bが弁収容穴31dに固定されるボール軸受67を介して軸支されている。出力側回転体65(回転体本体65a)は、自身の中心軸心が回転軸53及び弁体33の中心軸心と同様に基準軸心L1上となる配置としている。連結筒部65bは、内側に弁体33の連結部33cが挿入され、一体回転可能かつ軸方向に相対移動可能に連結している。つまり、出力側回転体65は、自身の回転動作を弁体33に伝達するとともに、回転動作に伴う弁体33の直動動作を許容する連結構造となっている。
【0038】
出力側回転体65は、上面において、内側転動ギヤ63側に設けられる連結用磁石66と同じ所定幅Wで一定の円環状をなす永久磁石よりなる連結用磁石68が取り付けられている。この連結用磁石68は、周方向等角度間隔で例えば10極の磁極部68aを有し、連結用磁石66と同一部品にて対応可能である。連結用磁石68は、自身の中心軸心が出力側回転体65の中心軸心と同様に基準軸心L1上となる配置としている。連結用磁石68は、回転体本体65aの上面の取付溝65c内に収容されて、連結用磁石68の上面と回転体本体65aの上面とが面一をなしている。
【0039】
内側転動ギヤ63と出力側回転体65とは、軸方向において閉塞板34を挟んで対向している。すなわち、連結用磁石66を有する内側転動ギヤ63の下面は、閉塞板34と対向し、閉塞板34を介して出力側回転体65(回転体本体65a)の上面と間接的に対向する。連結用磁石68を有する出力側回転体65(回転体本体65a)の上面は、閉塞板34と対向し、閉塞板34を介して内側転動ギヤ63の下面と間接的に対向する。そして、この閉塞板34は非磁性金属製であることから、連結用磁石66,68間の異極同士の吸引力にて内側転動ギヤ63と出力側回転体65とが閉塞板34を介在して磁気的に連結し、内側転動ギヤ63の自転が出力側回転体65側に伝達するようになっている。
【0040】
本実施形態の磁気継手44の駆動伝達においては、基準軸心L1を回転中心として回転する出力側回転体65に対し、内側転動ギヤ63が偏心軸心L2を自転中心かつ基準軸心L1を公転中心として偏心回転するものとなっている。つまり、内側転動ギヤ63の公転軸心は、基準軸心L1である。個々の連結用磁石66,68についても連結用磁石68に対して連結用磁石66が偏心回転することになるが、相互間は機械的連結でない非接触な磁気的連結であることから、内側転動ギヤ63から出力側回転体65への駆動伝達は円滑に行われるものとなっている。
【0041】
なお、内側転動ギヤ63等が収容される側である減速機構43及び電動モータ42の内側空間69と、出力側回転体65等が収容される側である基台ブロック31内の回転体収容凹部31fを含む空間とは、閉塞板34にて液密に仕切られている。つまり、出力側回転体65が配置される空間は冷媒が存在する一方で、内側転動ギヤ63やその他、減速機構43及び電動モータ42、ひいては制御回路基板45及び温度圧力検出体46についても、冷媒が存在する空間とは液密に仕切られた空間内に数多くの構成部品を配置することが可能である。しかもこの場合、平板状の内側転動ギヤ63と、同じく平板状の出力側回転体65(回転体本体65a)とが軸方向に対向することで、平板状の閉塞板34を用いた簡易な仕切り構造が可能である。
【0042】
図2(a)及び図2(b)に示すように、電動モータ42の上側のハウジング40の開口部40a付近には、制御回路基板45が配置されている。制御回路基板45は、電動モータ42から延びる接続端子42xと接続され、接続端子42xを介して電動モータ42に電源供給を行う。電動モータ42は、制御回路基板45からの電源供給に基づいて回転駆動が制御される。制御回路基板45は、自身の板面方向が電動モータ42の軸方向と直交する方向に沿うように配置され、また電動モータ42と温度圧力検出体46とに跨るようにして配置されている。
【0043】
制御回路基板45には、電動モータ42が接続される側とは反対側にて、温度圧力検出体46が接続されている。温度圧力検出体46は、一方向に長い部品形状をなし、自身の長手方向が上下方向に沿うように配置、すなわち電動モータ42の軸方向と平行となるように配置されている。温度圧力検出体46は、下端部においてセンサIC46aの検出面が少なくとも露出するように、また上端部からは接続端子46xが外部に突出するように設けられており、それ以外の部分が樹脂モールドされてなる。なお、温度圧力検出体46は、モールド部分の内部に、センサIC46aからの信号を処理する処理IC等を備えていてもよい。
【0044】
温度圧力検出体46は、ハウジング40の底面部から下方に突出する支持筒部40cの内側に挿通されて保持されている。ここで、電動モータ42は基台ブロック31の流入路31aの上側、すなわち膨張弁18上側に配置されているのに対し、温度圧力検出体46は基台ブロック31の流出路31b上に配置されている。支持筒部40cは、基台ブロック31の流出路31bと連通するセンサ取付穴31iに嵌挿されており、支持筒部40cの下端部からは、温度圧力検出体46の下端部が突出している。つまり、支持筒部40cのセンサ取付穴31iへの取付状態において、温度圧力検出体46の下端部のセンサIC46aが基台ブロック31の流出路31b内に位置するようになっている。
【0045】
なお、支持筒部40cの下端部の内側面と温度圧力検出体46の外側面との間にシール部材47が設けられている。シール部材47は、基台ブロック31の流出路31b内の空間と、支持筒部40c内を通じたハウジング40内の空間とを液密に仕切り、流出路31b内を流れる冷媒のハウジング40内への浸入を防止する。また、支持筒部40cの外側面には、自身の周囲を囲むように環状をなすシール部材48が装着されており、センサ取付穴31iの内側面との間にそのシール部材48が介在するようになっている。シール部材48は、流出路31b内を流れる冷媒の基台ブロック31から外部への漏出を防止する。
【0046】
温度圧力検出体46は、上端部の接続端子46xが制御回路基板45と接続されている。そして、温度圧力検出体46は、エバポレータ11側から流出路31b内を流れる冷媒の温度及び圧力をセンサIC46aが検出し、センサIC46aからの各検出信号を接続端子46xを介して制御回路基板45に出力する。
【0047】
ハウジング40の開口部40a付近の側面部には、コネクタ部49が一体的に設けられている。コネクタ部49は、接続端子49xを有しており、接続端子49xの基端部が制御回路基板45と接続されている。コネクタ部49は、自身の制御回路基板45と、車両側に搭載の図5に示すバッテリBTや上位ECU(Electronic Control Unit)100と電気的な接続を図るために設けられている。
【0048】
制御回路基板45は、制御部101と駆動部102とを備える。制御部101は、制御IC等から構成され、バッテリBTに基づく動作電源の供給に基づいて動作する。制御部101は、上位ECU100側との信号の授受や温度圧力検出体46からの検出信号を入力する。制御部101は、上位ECU100側との連携とともに、温度圧力検出体46を介して得られる冷媒の温度及び圧力に基づき、駆動部102を通じて電動モータ42への駆動電流Imを調整する。駆動部102は、半導体スイッチング素子を用いるブリッジ回路や電磁リレーを用いる回路等から構成される。駆動部102は、制御部101の制御に基づき、バッテリBTから電動モータ42に供給する駆動電流Imを生成する。
【0049】
また、電動モータ42に供給する駆動電流Imは、制御部101に電流検出部103にて検出されている。電動モータ42の駆動電流Imが流れる電路上、本実施形態では駆動部102と接地部位GNDとの間に設けられるシャント抵抗を検知器104とし、電流検出部103には、検知器104からの電圧信号が入力される。電流検出部103は、検知器104からの電圧信号に基づいて電動モータ42の駆動電流Imを検出する。なお、駆動部102と電動モータ42との間に設置する電流センサを検知器105とし、電流検出部103は、検知器105を介して電動モータ42の駆動電流Imを検出する態様としてもよい。
【0050】
ここで、本実施形態では、電動モータ42から弁体33までの駆動伝達経路上に、磁気継手44が用いられている。磁気継手44は、駆動側回転体である内側転動ギヤ63と従動側回転体である出力側回転体65との間を非接触で磁気的連結する構造であるため、駆動側及び従動側の両回転体間に位相ずれΔθが生じる。また、この位相ずれΔθは、電動モータ42の駆動トルクが大きくなるにつれて大きくなる。つまり、電動モータ42の駆動トルクと駆動電流Imとは相応するものであるため、図6に示すように、位相ずれΔθが大きくなるにつれて駆動電流Imも大きくなるといった相関関係にある。ちなみに、電動モータ42の駆動トルクは、機械ロス等に対応する一定のベーストルクTbに、負荷を駆動するための負荷トルクTaを加えたものである。
(【0051】以降は省略されています)

この特許をJ-PlatPatで参照する

関連特許

株式会社デンソー
送風機
株式会社デンソー
統合弁
株式会社デンソー
弁装置
株式会社デンソー
弁装置
株式会社デンソー
制御装置
株式会社デンソー
回転電機
株式会社デンソー
流体機械
株式会社デンソー
診断装置
株式会社デンソー
表示装置
株式会社デンソー
表示装置
株式会社デンソー
空調装置
株式会社デンソー
電源装置
株式会社デンソー
回転電機
株式会社デンソー
回転電機
株式会社デンソー
電源回路
株式会社デンソー
流体機械
株式会社デンソー
駆動装置
株式会社デンソー
車載装置
株式会社デンソー
熱交換器
株式会社デンソー
電池装置
株式会社デンソー
測距装置
株式会社デンソー
流体機械
株式会社デンソー
駆動装置
株式会社デンソー
制御装置
株式会社デンソー
表示装置
株式会社デンソー
表示装置
株式会社デンソー
熱交換器
株式会社デンソー
回転電機
株式会社デンソー
光計測装置
株式会社デンソー
高圧ポンプ
株式会社デンソー
ガスセンサ
株式会社デンソー
半導体装置
株式会社デンソー
半導体装置
株式会社デンソー
ヒータ装置
株式会社デンソー
車両制御装置
株式会社デンソー
駐車支援装置
続きを見る