TOP特許意匠商標
特許ウォッチ DM通知 Twitter
公開番号2020078211
公報種別公開特許公報(A)
公開日20200521
出願番号2018211657
出願日20181109
発明の名称車両の電源装置
出願人トヨタ自動車株式会社,株式会社豊田中央研究所
代理人特許業務法人酒井国際特許事務所
主分類H02J 7/00 20060101AFI20200424BHJP(電力の発電,変換,配電)
要約【課題】2つのバッテリの接続状態を直列接続状態から並列接続状態に切り換える際に突入電流が発生することを抑制可能な車両の電源装置を提供すること。
【解決手段】本発明に係る車両の電源装置は、第1バッテリと第2バッテリとの接続状態を直列接続状態から並列接続状態に切り換える際、時間経過と共に第2スイッチ素子のオン時間を短く、且つ、第3スイッチ素子のオン時間を長くしながら第2スイッチ素子及び第3スイッチ素子を交互にオン/オフする遷移制御を実行することにより平滑コンデンサの電圧を第1バッテリの電圧と第2バッテリの電圧の高い方の電圧まで減少させ、第1スイッチ素子のダイオードが通電した後、第1スイッチ素子をオンする。
【選択図】図5
特許請求の範囲【請求項1】
正線と第1ノードとの間に接続された第1スイッチ素子と、第1ノードと第2ノードとの間に接続された第2スイッチ素子と、第2ノードと負線との間に接続された第3スイッチ素子と、前記第1ノード及び前記負線にそれぞれ正極及び負極が接続された第1バッテリと、前記正線と第3ノードとの間に接続されたリアクトル素子と、前記第3ノード及び前記第2ノードにそれぞれ正極及び負極が接続された第2バッテリと、前記正線と前記負線との間に接続された平滑コンデンサと、を備え、前記第1スイッチ素子、前記第2スイッチ素子、及び前記第3スイッチ素子のオン/オフ状態を切り換えることにより、前記第1バッテリと前記第2バッテリとの接続状態を直列接続状態と並列接続状態との間で切り換え可能な車両の電源装置であって、
前記第1バッテリと前記第2バッテリとの接続状態を直列接続状態から並列接続状態に切り換える際、時間経過と共に前記第2スイッチ素子のオン時間を短く、且つ、前記第3スイッチ素子のオン時間を長くしながら前記第2スイッチ素子及び前記第3スイッチ素子を交互にオン/オフする遷移制御を実行することにより前記平滑コンデンサの電圧を前記第1バッテリの電圧と前記第2バッテリの電圧の高い方の電圧まで減少させ、前記第1スイッチ素子のダイオードが通電した後、前記第1スイッチ素子をオンする切換制御を実行する制御手段を備えることを特徴とする車両の電源装置。
続きを表示(約 430 文字)【請求項2】
前記制御手段は、前記第1スイッチ素子及び前記第3スイッチ素子をオフ状態、前記第2スイッチ素子をオン状態に制御することにより、前記第1バッテリと前記第2バッテリとの接続状態を直列接続状態に制御し、前記第1スイッチ素子及び前記第3スイッチ素子をオン状態、前記第2スイッチ素子をオフ状態に制御することにより、前記第1バッテリと前記第2バッテリとの接続状態を並列接続状態に制御することを特徴とする請求項1に記載の車両の電源装置。
【請求項3】
前記制御手段は、前記第1バッテリの電圧が前記第2バッテリの電圧より小さい場合に前記切換制御を実行することを特徴とする請求項1又は2に記載の車両の電源装置。
【請求項4】
前記制御手段は、前記第1スイッチ素子のダイオードが通電しない場合、前記第1バッテリと前記第2バッテリとの接続状態を直列接続状態に維持することを特徴とする請求項1〜3のうち、いずれか1項に記載の車両の電源装置。

発明の詳細な説明【技術分野】
【0001】
本発明は、2つのバッテリの接続状態を直列接続状態と並列接続状態との間で切り換え可能な車両の電源装置に関する。
続きを表示(約 8,100 文字)【背景技術】
【0002】
特許文献1には、スイッチ素子を制御することによって直列接続状態と並列接続状態との間で接続状態を切り換え可能な2つのバッテリと、2つのバッテリのうちの一方のバッテリに直列に接続されたリアクトル素子と、を備える電源装置が記載されている。
【先行技術文献】
【特許文献】
【0003】
特開2014−064416号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の電源装置では、2つのバッテリの接続状態を直列接続状態から並列接続状態に切り換える際、リアクトル素子が接続されている方のバッテリの電圧が他方のバッテリの電圧より高い場合には、他方のバッテリに突入電流が発生する可能性がある。
【0005】
本発明は、上記課題に鑑みてなされたものであって、その目的は、2つのバッテリの接続状態を直列接続状態から並列接続状態に切り換える際に突入電流が発生することを抑制可能な車両の電源装置を提供することにある。
【課題を解決するための手段】
【0006】
本発明に係る車両の電源装置は、正線と第1ノードとの間に接続された第1スイッチ素子と、第1ノードと第2ノードとの間に接続された第2スイッチ素子と、第2ノードと負線との間に接続された第3スイッチ素子と、前記第1ノード及び前記負線にそれぞれ正極及び負極が接続された第1バッテリと、前記正線と第3ノードとの間に接続されたリアクトル素子と、前記第3ノード及び前記第2ノードにそれぞれ正極及び負極が接続された第2バッテリと、前記正線と前記負線との間に接続された平滑コンデンサと、を備え、前記第1スイッチ素子、前記第2スイッチ素子、及び前記第3スイッチ素子のオン/オフ状態を切り換えることにより、前記第1バッテリと前記第2バッテリとの接続状態を直列接続状態と並列接続状態との間で切り換え可能な車両の電源装置であって、前記第1バッテリと前記第2バッテリとの接続状態を直列接続状態から並列接続状態に切り換える際、時間経過と共に前記第2スイッチ素子のオン時間を短く、且つ、前記第3スイッチ素子のオン時間を長くしながら前記第2スイッチ素子及び前記第3スイッチ素子を交互にオン/オフする遷移制御を実行することにより前記平滑コンデンサの電圧を前記第1バッテリの電圧と前記第2バッテリの電圧の高い方の電圧まで減少させ、前記第1スイッチ素子のダイオードが通電した後、前記第1スイッチ素子をオンする切換制御を実行する制御手段を備えることを特徴とする。
【0007】
本発明に係る車両の電源装置は、上記発明において、前記制御手段は、前記第1スイッチ素子及び前記第3スイッチ素子をオフ状態、前記第2スイッチ素子をオン状態に制御することにより、前記第1バッテリと前記第2バッテリとの接続状態を直列接続状態に制御し、前記第1スイッチ素子及び前記第3スイッチ素子をオン状態、前記第2スイッチ素子をオフ状態に制御することにより、前記第1バッテリと前記第2バッテリとの接続状態を並列接続状態に制御することを特徴とする。
【0008】
本発明に係る車両の電源装置は、上記発明において、前記制御手段は、前記第1バッテリの電圧が前記第2バッテリの電圧より小さい場合に前記切換制御を実行することを特徴とする。
【0009】
本発明に係る車両の電源装置は、上記発明において、前記制御手段は、前記第1スイッチ素子のダイオードが通電しない場合、前記第1バッテリと前記第2バッテリとの接続状態を直列接続状態に維持することを特徴とする。
【発明の効果】
【0010】
本発明に係る車両の電源装置によれば、時間経過と共に第2スイッチ素子のオン時間を短く、且つ、第3スイッチ素子のオン時間を長くしながら第2スイッチ素子及び第3スイッチ素子を交互にオン/オフする遷移制御を実行することにより平滑コンデンサの電圧を第1バッテリの電圧と第2バッテリの電圧の高い方の電圧まで減少させ、第1スイッチ素子のダイオードが通電した後、第1スイッチ素子をオンするので、2つのバッテリの接続状態を直列接続状態から並列接続状態に切り換える際に突入電流が発生することを抑制できる。
【図面の簡単な説明】
【0011】
図1は、本発明の一実施形態である車両の電源装置が適用される車両の構成を示すブロック図である。
図2は、図1に示す電源装置の構成を示す回路図である。
図3は、第1バッテリの電圧が第2バッテリの電圧より大きい場合における直列/並列切換制御処理を説明するための図である。
図4は、第1バッテリの電圧が第2バッテリの電圧より小さい場合における直列/並列切換制御処理を説明するための図である。
図5は、本発明の一実施形態である直列/並列切換制御処理の流れを示すフローチャートである。
図6は、図5に示すステップS3の処理を説明するための図である。
【発明を実施するための形態】
【0012】
以下、図面を参照して、本発明の一実施形態である車両の電源装置の構成について説明する。
【0013】
〔車両の構成〕
まず、図1を参照して、本発明の一実施形態である車両の電源装置が適用される車両の構成について説明する。
【0014】
図1は、本発明の一実施形態である車両の電源装置が適用される車両の構成を示すブロック図である。図1に示すように、本発明の一実施形態である車両の電源装置が適用される車両1は、HV(Hybrid Vehicle),EV(Electric Vehicle),PHV(Plug-in Hybrid Vehicle),FCEV(Fuel Cell Electric Vehicle)等の車両によって構成され、電源装置2、インバータ3、及び駆動用モータ4を備えている。
【0015】
電源装置2は、正線PL及び負線NLを介してインバータ3に接続され、図示しないECU(Electronic Control Unit)等の制御装置からの制御信号に従ってインバータ3との間で電力を充放電する機能を有している。
【0016】
インバータ3は、配線L1,L2,L3を介して駆動用モータ4に接続され、直流電力と交流電力とを相互に変換する機能を有している。本実施形態では、インバータ3は、電源装置2から供給された直流電力を交流電力に変換して駆動用モータ4に供給すると共に、駆動用モータ4が発電した交流電力を直流電力に変換して電源装置2に供給する。なお、インバータ3は複数設けてもよい。
【0017】
駆動用モータ4は、同期発電電動機により構成されている。駆動用モータ4は、インバータ3から供給された交流電力によって駆動されることにより車両駆動用の電動機として機能すると共に、車両の駆動力を利用して交流電力を発電する発電機として機能する。
【0018】
〔電源装置の構成〕
次に、図2を参照して、電源装置2の構成について説明する。
【0019】
図2は、図1に示す電源装置2の構成を示す回路図である。図2に示すように、電源装置2は、正線PLと第1ノードN1との間に接続された第1スイッチ素子S1と、第1ノードN1と第2ノードN2との間に接続された第2スイッチ素子S2と、第2ノードN2と負線NLとの間に接続された第3スイッチ素子S3と、第1ノードN1及び負線NLにそれぞれ正極及び負極が接続された第1バッテリB1と、正線PLと第3ノードN3との間に接続されたリアクトル素子Rと、第3ノードN3及び第2ノードN2にそれぞれ正極及び負極が接続された第2バッテリB2と、正線PLと負線NLとの間に接続された平滑コンデンサC

と、を備えている。また、電源装置2は、その制御系として、第1スイッチ素子S1のダイオード電流を検出する電流センサ21と、電源装置2の動作を制御する制御部22と、を備えている。
【0020】
なお、第1スイッチ素子S1、第2スイッチ素子S2、及び第3スイッチ素子S3は、半導体スイッチング素子によって構成されている。半導体スイッチング素子としては、IGBT(Insulated Gate Bipolar Transistor)が用いられる。IGBTのコレクタ端子とエミッタ端子との間には、エミッタ端子に接続される側をアノードとしてダイオード(整流素子)が接続されている。半導体スイッチング素子としてIGBT以外のものを用いる場合、スイッチ素子が導通したときに流れる電流とは逆向きの電流が流れるように半導体スイッチング素子にダイオードを並列に接続する。ダイオードは、半導体スイッチング素子に伴う寄生ダイオードであってもよい。本明細書では、半導体スイッチング素子とダイオードとを併せたものをスイッチ素子という。
【0021】
この電源装置2では、制御部22が、第1スイッチ素子S1、第2スイッチ素子S2、及び第3スイッチ素子S3のオン/オフ状態を制御することにより、第1バッテリB1と第2バッテリB2との接続状態を直列接続状態と並列接続状態との間で切り換えることができる。具体的には、制御部22が、第1スイッチ素子S1及び第3スイッチ素子S3をオフ状態、第2スイッチ素子S2をオン状態に制御することにより、第1バッテリB1と第2バッテリB2とは直列に接続される。また、制御部22が、第1スイッチ素子S1及び第3スイッチ素子S3をオン状態、第2スイッチ素子S2をオフ状態に制御することにより、第1バッテリB1と第2バッテリB2とは並列に接続される。
【0022】
ところで、このような構成を有する電源装置2では、第1バッテリB1と第2バッテリB2との接続状態を直列接続状態から並列接続状態に切り換える際、制御部22が、時間経過と共に第2スイッチ素子S2のオン時間を短く、且つ、第3スイッチ素子S3のオン時間を長くしながら第2スイッチ素子及び第3スイッチ素子を交互にオン/オフする直列/並列切換遷移制御処理を実行することにより、平滑コンデンサC

の電圧VHを第1バッテリB1の電圧VB1及び第2バッテリB2の電圧VB2の大きい方の電圧まで減少させる。そして、制御部22は、直列/並列切換遷移制御処理の実行が完了した後、第1スイッチ素子S1をオンする。
【0023】
このとき、図3(a)〜(c)に示すように、第1バッテリB1の電圧VB1が第2バッテリB2の電圧VB2より大きい場合、第1スイッチ素子S1のダイオードが通電することによって第1バッテリB1から第2バッテリB2側に電流が流れるが、第2バッテリB2側にはリアクトル素子Rがあるので、第1スイッチ素子S1をオンしたときに突入電流は発生しない。しかしながら、図4(a)〜(c)に示すように、第1バッテリB1の電圧VB1が第2バッテリB2の電圧VB2より小さい場合には、第1スイッチ素子S1と平滑コンデンサC

との間にはリアクトル素子Rが無いために、第1スイッチ素子S1をオンした瞬間に平滑コンデンサC

から第1バッテリB1に向かって突入電流が発生する。なお、図3(a),図4(a)は直列/並列切換遷移制御処理の実行前後における第1バッテリB1の電圧VB1及び第2バッテリB2の電圧VB2を示している。
【0024】
そこで、本発明の一実施形態である車両の電源装置では、制御部22が以下に示す直列/並列切換処理を実行することにより第1バッテリB1と第2バッテリB2との接続状態を直列接続状態から並列接続状態に切り換える際に突入電流が発生することを抑制する。以下、図5及び図6を参照して、直列/並列切換処理を実行する際の制御部22の動作について説明する。
【0025】
〔直列/並列切換処理〕
図5は、本発明の一実施形態である直列/並列切換制御処理の流れを示すフローチャートである。図6は、図5に示すステップS3の処理を説明するための図である。図5に示すフローチャートは、車両1のイグニッションスイッチがオフ状態からオン状態に切り換えられたタイミングでスタートとなり、直列/並列切換制御処理はステップS1の処理に進む。
【0026】
ステップS1の処理では、制御部22が、電源装置2に対する動作モード指令が並列接続状態であるか否かを判別する。判別の結果、動作モード指令が並列接続状態である場合(ステップS1:Yes)、制御部22は、直列/並列切換制御処理をステップS2の処理に進める。一方、動作モード指令が並列接続状態でない場合には(ステップS1:No)、制御部22は、一連の直列/並列切換制御処理を終了する。
【0027】
ステップS2の処理では、制御部22が、第1スイッチ素子S1の状態がオフ状態であるか否かを判別する。判別の結果、第1スイッチ素子S1の状態がオフ状態である場合(ステップS2:Yes)、制御部22は、直列/並列切換制御処理をステップS3の処理に進める。一方、第1スイッチ素子S1の状態がオン状態である場合には(ステップS2:No)、制御部22は、一連の直列/並列切換制御処理を終了する。
【0028】
ステップS3の処理では、制御部22が、図6(a),(b)に示すように、時間経過と共に第2スイッチ素子S2のオン時間を短く、且つ、第3スイッチ素子S3のオン時間を長くしながら第2スイッチ素子S2及び第3スイッチ素子S3を交互にオン/オフする直列/並列切換遷移制御処理を実行することにより平滑コンデンサC

の電圧VHを第1バッテリB1の電圧VB1及び第2バッテリB2の電圧VB2の大きい方の電圧まで減少させる。これにより、ステップS3の処理は完了し、直列/並列切換制御処理はステップS4の処理に進む。
【0029】
ステップS4の処理では、制御部22が、直列/並列切換遷移制御処理が完了したか否かを判別する。判別の結果、直列/並列切換遷移制御処理が完了した場合(ステップS4:Yes)、制御部22は、直列/並列切換制御処理をステップS5の処理に進める。一方、直列/並列切換遷移制御処理が完了していない場合(ステップS4:No)、制御部22は、所定時間が経過した後に再度ステップS4の処理を実行する。直列/並列切換遷移制御処理が完了したか否かは、例えば第1バッテリB1の電圧VB1、第2バッテリB2の電圧VB2、及び電源装置2の出力電圧VHが同じになったことを検出することにより判別できる。
【0030】
ステップS5の処理では、制御部22が、電流センサ21の検出信号に基づいて第1スイッチ素子S1のダイオードが通電しているか否かを判別する。判別の結果、第1スイッチ素子S1のダイオードが通電している場合(ステップS5:Yes)、制御部22は、直列/並列切換制御処理をステップS6の処理に進める。一方、第1スイッチ素子S1のダイオードが通電していない場合には(ステップS5:No)、制御部22は、一連の直列/並列切換制御処理を終了する。なお、電流センサ21の検出信号に基づいて誤判定をしないように、判定閾値は電流センサ21の検出誤差を考慮して設定されている。
【0031】
ステップS6の処理では、制御部22が、第1スイッチ素子S1をオンする。これにより、ステップS6の処理は完了し、一連の直列/並列切換制御処理は終了する。
【0032】
以上の説明から明らかなように、本発明の一実施形態である直列/並列切換制御処理では、制御部22が、第1バッテリB1と第2バッテリB2との接続状態を直列接続状態から並列接続状態に切り換える際、時間経過と共に第2スイッチ素子S2のオン時間を短く、且つ、第3スイッチ素子S3のオン時間を長くしながら第2スイッチ素子S2及び第3スイッチ素子S3を交互にオン/オフする直列/並列切換遷移制御処理を実行することにより平滑コンデンサC

の電圧VHを第1バッテリB1の電圧VB1及び第2バッテリB2の電圧VB2の大きい方の電圧まで減少させ、第1スイッチ素子S1のダイオードが通電した後、第1スイッチ素子S1をオンするので、第1バッテリB1と第2バッテリB2との接続状態を直列接続状態から並列接続状態に切り換える際に突入電流が発生することを抑制できる。
【0033】
より詳しくは、第1バッテリB1と第2バッテリB2との接続状態を直列接続状態から並列接続状態に切り換えると、第1バッテリB1、第2バッテリB2、及び平滑コンデンサC

が並列に接続されるので、平滑コンデンサC

には第1バッテリB1の電圧VB1及び第2バッテリB2の電圧VB2の高い方の電圧が印加され、電圧の低い方のバッテリには突入電流が流れ込むことになる。図2に示す構成では、第2バッテリB2側にリアクトル素子Rが配置されているので、一般的には第1バッテリB1の電圧が第2バッテリB2の電圧より高くなり、第2バッテリB2に突入電流が流れ込もうとする。しかしながら、リアクトル素子Rがあるので、第2バッテリB2に突入電流が流れ込むことは抑制される。但し、状況によっては第1バッテリB1の電圧VB1が第2バッテリB2の電圧VB2より低くなることもあるが、第1バッテリB1側にはリアクトル素子がないため、第1バッテリB1に突入電流が流れ込む。このため、本実施形態では、第1バッテリB1の電圧VB1が第2バッテリB2の電圧VB2より低い場合であっても第1バッテリB1に突入電流が流れ込むことを抑制するために上述した制御を行っている。なお、第1バッテリB1の電圧VB1が第2バッテリB2の電圧VB2より高い、つまり第1スイッチ素子S1のダイオードが通電した後ならば、第1バッテリB1と第2バッテリB2との接続状態を並列接続状態にしても突入電流は発生しない。
【0034】
以上、本発明者らによってなされた発明を適用した実施形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施形態、実施例、及び運用技術等は全て本発明の範疇に含まれる。
【符号の説明】
【0035】
1 車両
2 電源装置
3 インバータ
4 駆動用モータ
21 電流センサ
22 制御部
B1 第1バッテリ
B2 第2バッテリ


平滑コンデンサ
N1 第1ノード
N2 第2ノード
N3 第3ノード
NL 負線
PL 正線
R リアクトル素子
S1 第1スイッチ素子
S2 第2スイッチ素子
S3 第3スイッチ素子

この特許をJ-PlatPatで参照する

関連特許

トヨタ自動車株式会社
車両
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
負極
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
車両
トヨタ自動車株式会社
電池
トヨタ自動車株式会社
活物質
トヨタ自動車株式会社
組電池
トヨタ自動車株式会社
組電池
トヨタ自動車株式会社
組電池
トヨタ自動車株式会社
組電池
トヨタ自動車株式会社
ダクト
トヨタ自動車株式会社
加熱炉
トヨタ自動車株式会社
活物質
トヨタ自動車株式会社
移動体
トヨタ自動車株式会社
過給機
トヨタ自動車株式会社
計測装置
トヨタ自動車株式会社
蓄電装置
トヨタ自動車株式会社
内燃機関
トヨタ自動車株式会社
冷却装置
トヨタ自動車株式会社
蓄電装置
トヨタ自動車株式会社
差動装置
トヨタ自動車株式会社
複合歯車
トヨタ自動車株式会社
蓄電装置
トヨタ自動車株式会社
操舵装置
トヨタ自動車株式会社
制御装置
トヨタ自動車株式会社
圧力容器
トヨタ自動車株式会社
内燃機関
トヨタ自動車株式会社
電気機器
トヨタ自動車株式会社
電動車両
続きを見る