TOP特許意匠商標
特許ウォッチ DM通知 Twitter
公開番号2019205319
公報種別公開特許公報(A)
公開日20191128
出願番号2018100760
出願日20180525
発明の名称車両の電源システム
出願人本田技研工業株式会社
代理人個人,個人,個人
主分類B60L 9/18 20060101AFI20191101BHJP(車両一般)
要約【課題】降圧側のコンデンサへ好適に充電し、システム故障を抑制することができる、車両の電源システムを提供すること。
【解決手段】車両の電源システム1は、高電圧バッテリ21と、高電圧バッテリ21と接続する第1インバータ23と、第1インバータ23と接続する駆動モータRMと、高電圧バッテリ21の電圧を降圧する高電圧DCDCコンバータ22と、高電圧DCDCコンバータ22と接続する補機6等と、補機6等と並列に接続するコンデンサC1と、コンデンサC1の充電状態を取得する電流センサ30等と、電流センサ30等の取得値に基づいて高電圧DCDCコンバータ22を制御するVCUECU8と、を備える。
【選択図】図1

特許請求の範囲【請求項1】
蓄電池と、
前記蓄電池と接続する第一電力変換器と、
前記第一電力変換器と接続する第一駆動用電動機と、
前記蓄電池の電圧を降圧する電圧変換器と、
前記電圧変換器と接続する電気機器と、
前記電気機器と並列に接続するコンデンサと、
前記コンデンサの充電状態を取得する充電状態取得手段と、
前記充電状態取得手段の取得値に基づいて電圧変換機器を制御する制御手段と、を
備える車両の電源システム。
続きを表示(約 830 文字)【請求項2】
前記蓄電池の接続状態および遮断状態を切り替える切り替え手段をさらに備え、
前記制御手段は、切り替え手段が遮断状態から接続状態へ切り替えたときに前記充電状態取得手段の取得値に基づいて電圧変換機器を制御する、請求項1に記載の車両の電源システム。
【請求項3】
前記充電状態取得手段は電流値取得手段であり、前記コンデンサへの充電電流値が一定となるように電圧変換器を制御する、請求項1または2に記載の車両の電源システム。
【請求項4】
前記充電状態取得手段は電圧値取得手段であり、前記コンデンサの充電電圧値が段階的に上昇するように前記電圧変換器を制御する、請求項1または2に記載の車両の電源システム。
【請求項5】
前記電気機器は、前記第二電力変換器を介して接続する第二駆動用電動機である、請求項1から4のいずれか一項に記載の車両の電源システム。
【請求項6】
前記電気機器は補機である、請求項1から5のいずれか一項に記載の車両の電源システム。
【請求項7】
前記補機は、
前記直流充電源より充電可能な直流充電部と、
外部充電機器より前記直流充電部へ印加される電圧値を取得する印加電圧値取得手段と、
前記直流充電部から前記電圧変換器と前記蓄電池との間へ接続する高圧充電経路と、
直流充電部から電圧変換器と前記第二電力変換器との間へ接続する低圧充電経路とであり、
前記制御手段は、低圧充電経路からの充電開始前に、印加電圧取得値に基づいて、電圧変換機器を制御し、コンデンサの電圧を調整する、請求項6に記載の車両の電源システム。
【請求項8】
蓄電池の電圧を降圧する電圧変換器のコイルと、電圧変換器と接続する電気機器との間にスイッチング素子を配置する、請求項1ないし7のいずれか一項に記載の車両の電源システム。

発明の詳細な説明【技術分野】
【0001】
本発明は、車両の電源システムに関する。
続きを表示(約 10,000 文字)【背景技術】
【0002】
従来、バッテリから単一の電圧変換機を介して、複数の駆動モータへ電力供給を行う車両の電源システムが知られている。バッテリの電圧は、電圧変換機によって所定の電圧に変換され、各駆動モータは変換された電圧によって駆動する(特許文献1)。
【先行技術文献】
【特許文献】
【0003】
特開2015−216725号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、特許文献1の構成では、複数のモータが、単一の電圧変換機に対してバッテリと反対側に並列に接続されるため、各モータへ供給される電圧は同電位となる。これにより、定格が異なるモータを組み合わせて使用できない等、モータの組み合わせの選択肢が制限されるという問題があった。
【0005】
そこで、複数のモータの間に電圧変換機を設けることによって、モータごとに異なる電圧を与える構成が提案されているが、電圧変換機に対する蓄電池の接続位置によっては、蓄電池の接続時にプリチャージが行えない回路が生じてしまい、電圧変換機の駆動開始時の急峻な電圧変化により該回路(ヒューズ、補機など)が損傷してしまう問題があった。
すなわち、異なる電圧にて駆動する複数のモータを備えるシステムにおいて、駆動開始時の回路電圧制御に改善の余地を残していた。
【0006】
本発明は、降圧側のコンデンサへ好適に充電し、システム故障を抑制することができる、車両の電源システムを提供することを目的とする。
【課題を解決するための手段】
【0007】
(1)本発明の車両の電源システム(例えば、後述の電源システム1)は、蓄電池(例えば、後述の高電圧バッテリ21)と、蓄電池と接続する第一電力変換器(例えば、後述の第1インバータ23)と、第一電力変換器と接続する第一駆動用電動機(例えば、後述の駆動モータRM)と、蓄電池の電圧を降圧する電圧変換器(例えば、後述の高電圧DCDCコンバータ22)と、電圧変換器と接続する電気機器(例えば、後述の第2インバータ24、補機6等)と、電気機器と並列に接続するコンデンサ(例えば、後述のコンデンサC1)と、コンデンサの充電状態を取得する充電状態取得手段(例えば、後述の電流センサ30、電圧センサ28)と、充電状態取得手段の取得値に基づいて電圧変換機器を制御する制御手段(例えば、後述のVCUECU8)と、を備えることを特徴とする。
【0008】
(1)の車両の電源システムによれば、降圧側のコンデンサへ好適に充電することができるため、システム故障を抑制することができる。
【0009】
(2)(1)の車両の電源システムにおいて、蓄電池の接続状態および遮断状態を切り替える切り替え手段(例えば、後述のコンタクタ212p)をさらに備え、制御手段は、切り替え手段が遮断状態から接続状態へ切り替えたときに充電状態取得手段の取得値に基づいて電圧変換機器を制御してもよい。
【0010】
(2)の車両の電源システムによれば、システム起動後の降圧側のコンデンサの充電を好適に行うことができ、速やかに電気機器をスタンバイ状態とすることができる。
【0011】
(3)(1)または(2)の車両の電源システムにおいて、充電状態取得手段は電流値取得手段(例えば、後述の電流センサ30)であり、コンデンサへの充電電流値が一定となるように電圧変換器を制御してもよい。
【0012】
(3)の車両の電源システムによれば、所望の充電時間内に確実に充電を行うことができ、またヒューズの断線を抑制することができる。
【0013】
(4)(1)または(2)の車両の電源システムにおいて、充電状態取得手段は電圧値取得手段(例えば、後述の電圧センサ28)であり、コンデンサの充電電圧値が段階的に上昇するように電圧変換器を制御してもよい。
【0014】
(4)の車両の電源システムによれば、所望の充電電圧まで好適に充電を行うことができ、またヒューズの断線を抑制できる。
【0015】
(5)(1)から(4)のいずれかの車両の電源システムにおいて、電気機器は、第二電力変換器を介して接続する第二駆動用電動機であってもよい。
【0016】
(5)の車両の電源システムによれば、一つのバッテリに対して、駆動電圧の異なる複数のモータを備えるシステムを実現することができる。
【0017】
(6)(1)から(5)のいずれかの車両の電源システムにおいて、電気機器は補機であってもよい。
【0018】
(6)の車両の電源システムによれば、補機の高電圧化対応等の不要なコスト増を回避することができるとともに、補機の故障を抑制することができる。
【0019】
(7)(6)の車両の電源システムにおける補機は、直流充電源より充電可能な直流充電部(例えば、後述の直流充電口4)と、外部充電機器より直流充電部へ印加される電圧値を取得する印加電圧値取得手段(例えば、後述の電圧センサ49)と、直流充電部から電圧変換器と蓄電池との間へ接続する高圧充電経路(VCUを経由しないでバッテリへ充電)と、直流充電部から電圧変換器と第二電力変換器との間へ接続する低圧充電経路(VCUを経由してバッテリへ充電)と、であり、制御手段は、低圧充電経路からの充電開始前に、印加電圧取得値に基づいて、電圧変換機器を制御し、コンデンサの電圧を調整してもよい。
【0020】
(7)の車両の電源システムによれば、外部充電機器から車両への充電時に、降圧側のコンデンサへ好適に充電することができるため、システム故障を抑制することができる。
【0021】
(8)(1)から(7)のいずれかの車両の電源システムにおいて、蓄電池の電圧を降圧する電圧変換器のコイルと、電圧変換器と接続する電気機器(例えば、後述の第2インバータ24、補機6)との間にスイッチング素子を配置してもよい。
【0022】
(8)の車両の電源システムによれば、電圧変換器の上側アームの素子が短絡故障した際に、電気機器側へ高圧の電圧が印加されることを抑制することができる。
【発明の効果】
【0023】
本発明によれば、降圧側のコンデンサへ好適に充電し、システム故障を抑制する、車両の電源システムを提供することができる。
【図面の簡単な説明】
【0024】
本発明の第1の実施形態に係る車両の電源システムを示す図である。
第1の実施形態に係るプリチャージの電流の流れを示す図である。
第1の実施形態に係るプリチャージのタイミングチャートを示す図である。
第2の実施形態に係るプリチャージの電流の流れを示す図である。
第2の実施形態に係るプリチャージのタイミングチャートを示す図である
第3の実施形態に係る車両の電源システムの一部を示す図である。
【発明を実施するための形態】
【0025】
以下、本発明の一実施形態について、図面を参照して説明する。
図1は、本実施形態に係る電源システム1を搭載する電動車両V(以下、単に「車両」という)の構成を示す図である。なお本実施形態では、車両Vとして、駆動モータを備える四輪駆動の電気自動車を例に説明するが、本発明はこれに限るものではない。本発明に係る電源システムは、二輪駆動の電気自動車や、ハイブリッド車両や、燃料電池自動車等、バッテリに蓄電された電力を用いて走行する車両であれば、どのような車両にも適用可能である。
【0026】
車両Vは、電源システム1と、前輪FWの駆動モータFMと、後輪RWの駆動モータRMと、を備える。駆動モータFM,RMは、主として車両Vが走行するための動力を発生する。駆動モータFM,RMの出力軸は、図示しない動力伝達機構を介して駆動輪FW,RWに連結されている。電源システム1から駆動モータFM,RMに電力を供給することにより駆動モータFM,RMで発生させたトルクは、各々、図示しない動力伝達機構を介して駆動輪FW,RWに伝達され、駆動輪FW,RWを回転させ、車両Vを走行させる。また駆動モータFM,RMは、車両Vの減速回生時には発電機として作用する。駆動モータMによって発電された電力は、電源システム1が備える高電圧バッテリ21に充電される。
【0027】
電源システム1は、高電圧バッテリ21が設けられた高電圧回路2、高電圧バッテリ21よりも低電圧の低電圧回路3、前輪FWを駆動する駆動モータFM、後輪RWを駆動する駆動モータRM、高電圧回路2及び低電圧回路3に電力を供給可能な直流充電部4、低電圧回路3に電力を供給可能な交流充電部5、及びヒータ等を有する補機6を備える。
【0028】
高電圧回路2は、高電圧バッテリ21と、電圧変換器としての高電圧DCDCコンバータ22と、高電圧バッテリ21の正負両極と高電圧DCDCコンバータ22の低電圧側正極端子221及び低電圧側負極端子222とを接続する第1電力線26p,26nと、電力変換器としての第1インバータ23と、高電圧DCDCコンバータ22の高電圧側正極端子223及び高電圧側負極端子224と第1インバータ23の直流入出力側とを接続する第2電力線27p,27nと、第2電力線27p,27nの電圧を検出する2次側電圧センサ29と、を備える。
【0029】
高電圧バッテリ21は、化学エネルギを電気エネルギに変換する放電と、及び電気エネルギを化学エネルギに変換する充電との両方が可能な二次電池である。以下では、この高電圧バッテリ21として、電極間をリチウムイオンが移動することで充放電を行う所謂リチウムイオン蓄電池を用いた場合について説明するが、本発明はこれに限らない。
【0030】
高電圧DCDCコンバータ22は、第1電力線26p,26nと第2電力線27p,27nとの間に設けられる。高電圧DCDCコンバータ22の低電圧側正極端子221及び低電圧側負極端子222は、それぞれ上述のように第1電力線26p,26nを介して高電圧バッテリ21に接続される。高電圧DCDCコンバータ22の高電圧側正極端子223及び高電圧側負極端子224は、第2電力線27p,27nを介して、高電圧バッテリ21及び第1インバータ23に接続される。
【0031】
高電圧DCDCコンバータ22は、リアクトルLと、第1平滑コンデンサC1と、ハイアーム素子225H,226Hと、ローアーム素子225L,226Lと、第2平滑コンデンサC2と、負母線227と、を組み合わせて構成される双方向DCDCコンバータである。
【0032】
ハイアーム素子225Hは、IGBTやMOSFET等の既知のパワースイッチング素子と、このパワースイッチング素子に並列に接続されたダイオードと、を備える。ローアーム素子225Lは、IGBTやMOSFET等の既知のパワースイッチング素子と、このパワースイッチング素子に並列に接続されたダイオードと、を備える。これらハイアーム素子225H、及びローアーム素子225Lは、高電圧側正極端子223と負母線227との間で、直列に、この順で接続される。ハイアーム素子226H、及びローアーム素子226Lもまた、高電圧側正極端子223と負母線227との間で、直列に、この順で接続される。
【0033】
ハイアーム素子225Hのパワースイッチング素子のコレクタは高電圧側正極端子223に接続され、そのエミッタはローアーム素子225Lのコレクタに接続される。ローアーム素子225Lのパワースイッチング素子のエミッタは、負母線227に接続される。ハイアーム素子225Hに設けられるダイオードの順方向は、リアクトルLから高電圧側正極端子223へ向かう向きである。またローアーム素子225Lに設けられるダイオードの順方向は、負母線227からリアクトルLへ向かう向きである。リアクトルLの一端子は、ハイアーム素子225Hのエミッタとローアーム素子225Lのコレクタとの間に接続され、リアクトルLの他端子は、ハイアーム素子226Hのエミッタとローアーム素子226Lのコレクタとの間に接続される。
【0034】
これらハイアーム素子225H,226H、及びローアーム素子225L,226Lは、それぞれVCUECU8によって生成されるゲート駆動信号によってオン又はオフにされる。
【0035】
高電圧DCDCコンバータ22は、VCUECU8から所定のタイミングで生成されるゲート駆動信号に従って上記素子225H,225Lをオン/オフ駆動することにより、双方向の電流に対する降圧機能を発揮する。降圧機能とは、高電圧側の端子223,224に印加される電圧を降圧して低電圧側の端子221,222に出力する機能をいい、これにより第2電力線27p,27nから第1電力線26p,26nへ電流を流すことも、第1電力線26p,26nから第2電力線27p,27nへ電流を流すことも可能である。なお以下では、第1電力線26p,26nの間の電位差を1次側電圧V1という。また第2電力線27p,27nの間の電位差を2次側電圧V2という。
【0036】
1次側電圧センサ28はこの1次側電圧V1を検出し、2次側センサ29はこの2次側電圧V2を検出し、検出値に応じた信号をVCUECU8へ送信する。
【0037】
第1インバータ23は、例えば、複数のスイッチング素子(例えば、IGBT)をブリッジ接続して構成されるブリッジ回路を備えた、パルス幅変調によるPWMインバータであり、直流電力と交流電力とを変換する機能を備える。第1インバータ23は、その直流入出力側において第2電力線27pの端子231,第2電力線27nの端子232に接続され、交流入出力側において駆動モータRMのU相、V相、W相の各コイルに接続されている。端子231と端子232の間には接地される端子233が設けられており、端子231と端子233との間にはコンデンサC4が、端子232と端子233との間にはコンデンサC5が設けられている。第2電力線27p,27nの間には、コンデンサC4,C5に対して並列に、車両Vの衝突時の放電を制御するアクティブディスチャージコントローラ234とコンデンサC3とが設けられる。
【0038】
第1インバータ23は、駆動モータRMのU相に接続されたハイ側U相スイッチング素子及びロー側U相スイッチング素子と、駆動モータRMのV相に接続されたハイ側V相スイッチング素子及びロー側V相スイッチング素子と、駆動モータRMのW相に接続されたハイ側W相スイッチング素子及びロー側W相スイッチング素子と、を相毎にブリッジ接続して構成される。
【0039】
第1インバータ23は、モータECU9によって所定のタイミングで生成されるゲート駆動信号に従って上記各相のスイッチング素子をオン/オフ駆動することにより、高電圧DCDCコンバータ22から供給される直流電力を交流電力に変換して駆動モータRMに供給したり、駆動モータRMから供給される交流電力を直流電力に変換して高電圧DCDCコンバータ22に供給したりする。なお、前輪FWの駆動モータFMと、後輪RWの駆動モータRMとの出力はどちらが大きくてもよい。
【0040】
直流充電部4は、PLCユニット7によって制御され、直流電源に接続されて高電圧バッテリ21の充電や一次側への電力供給を行う。直流充電部4の正極端子は第3電力線41pに接続され、直流充電部4の負極端子は第3電力線41nに接続される。第3電力線41pは、端子411およびコンタクタ42を介して第2電力線27pの端子211へ接続されるとともに、端子304を介して第1電力線26pの端子301に接続される。第3電力線41nは、端子412,413をこの順に介して、負母線227の端子229に接続される。第3電力線41nには、端子412と端子413との間に、コンタクタ45,46が並列に設けられ、コンタクタ45には経路短絡時の保護用のヒューズ44が端子412側に直列に接続され、コンタクタ46には順方向が端子413から端子412に向かう方向であるダイオード47が直列に接続される。
【0041】
高電圧バッテリ21は、正極端子が第2電力線27pに接続され、負極端子が第2電力線27nに接続されることによって、高電圧DCDCコンバータ22と第1インバータ23との間に並列に接続される。高電圧バッテリ21は、バッテリECU10によって充電及び放電の機能が制御される。高電圧バッテリ21は、メインコンタクタ212p、コンタクタ211nがこの順に直列に接続されており、これらがオンすることで、正極端子と負極端子との間に図示しないコンデンサが形成される。メインコンタクタ212pに対して並列に、プリチャージコンタクタ211pとプリチャージ抵抗211rが接続される。プリチャージコンタクタ211pとプリチャージ抵抗211rとは直列に接続されており、プリチャージコンタクタ211pを通る電流はプリチャージ抵抗211rによって緩和される。コンタクタ42,45がオンされると、図示しないコンデンサに対して直流充電部4から印加される電圧に基づく充電が行われる。一方、コンタクタ42がオフされ、プリチャージコンタクタ211p、コンタクタ211nがオンすることによって、高電圧バッテリ21に蓄えられた電荷が放電し、第1インバータ23または高電圧DCDCコンバータ22へ電流が供給される(以下、これを「プリチャージ」と称する)。そして、プリチャージコンタクタ211pがオフされて、メインコンタクタ212p、コンタクタ211nがオンする場合にも、第1インバータ23または高電圧DCDCコンバータ22へ電流が供給される。
【0042】
低電圧回路3は、高電圧DCDCコンバータ22の高電圧側正極端子221及び高電圧側負極端子222と、第2インバータ24の直流入出力側と、を接続する第1電力線26p,26nと、第1電力線26p,26nの電圧を検出する1次側電圧センサ28と、コンデンサC1への電流を検出することが可能な1次側電流センサ30と、補機6と、交流充電部5と、を備える。
【0043】
第2インバータ24は、第1インバータ23と同様の構成であって、直流電力と交流電力とを変換する機能を備える。第2インバータ24は、その直流入出力側において第1電力線26pの端子241,第1電力線26nの端子242に接続され、交流入出力側において駆動モータRMのU相、V相、W相の各コイルに接続されている。端子241と端子242との間にはコンデンサC6が設けられる。コンデンサC6に対して高電圧DCDCコンバータ22側に並列に、車両Vの衝突時の放電を制御するアクティブディスチャージコントローラ244、およびコンデンサC7,C8が設けられる。第1電力線26pの端子245と第1電力線26nの端子246との間には接地される端子243が設けられており、端子245と端子243との間にはコンデンサC7が、端子243と端子246との間にはコンデンサC8が設けられる。
【0044】
第2インバータ24は、モータECU11によって所定のタイミングで生成されるゲート駆動信号に従って各相のスイッチング素子をオン/オフ駆動することにより、高電圧DCDCコンバータ22から供給される直流電力を交流電力に変換して駆動モータFMに供給したり、駆動モータFMから供給される交流電力を直流電力に変換して高電圧DCDCコンバータ22に供給したりする。
【0045】
交流充電部5は、交流電流を直流電流に変換する機能を有するAC充電器53を備えており、その出力電流は1次側に供給される。AC充電器53への電流の入出力は、チャージECU54によって制御される。交流充電部5及びAC充電器53の正極側の端子は第5電力線51pに接続されており、交流充電部5及びAC充電器53の負極側の端子は第5電力線51nに接続されている。第5電力線51pはヒューズ51、端子304、および端子302を介して第1電力線26pの端子301に接続される。第5電力線51nは端子228を介して第1電力線26nの端子303に接続される。
【0046】
補機6は、例えば電動コンプレッサ、ヒータ等を備えている。補機6に設けられた平滑コンデンサC9の正極側の端子は第4電力線61pに接続されており、コンデンサC9の負極側の端子は第4電力線61nに接続されている。第4電力線61pはヒューズ61と端子302とを介して第1電力線26pの端子301に接続され、第4電力線61nは端子228を介して第1電力線26nの端子303に接続されている。すなわち、補機6は高電圧DCDCコンバータ22と第2インバータ24との間に並列に接続される。
【0047】
したがって、直流充電部4は、高電圧源に接続されて、高電圧バッテリ21に充電を行い、また第1電力線26p,26nの間に電圧を印可して電力を供給することが出来る。すなわち、コンタクタ42,45がオンすることによって形成される高圧充電経路では、端子211,229との間に高電圧が印可される。コンタクタ43,45がオンされることによって形成される低圧充電経路では、DCDCコンバータ22によって降圧された低電圧が端子229,301の間に印可される。
【0048】
図2および図3を参照して、第1の実施形態に係るプリチャージの動作を説明する。第1の実施形態では、高電圧バッテリ21の接続状態および遮断状態を切り替える切り替え手段である、メインコンタクタ212pが遮断状態から接続状態へ切り替えたとき、VCUECU8は、図2の矢印Sに示されるように電流センサ30の取得値に基づいて高電圧DCDCコンバータ22を制御する。
【0049】
図3は、第1の実施形態に係るプリチャージのタイミングチャートである。時刻t0において、イグニッションがオンするとVCUECU8は電力の制御を開始する。時刻t1において、プリチャージが開始する。VCUECU8は、コンタクタ211pをオン状態とすると、矢印Aに示される経路でコンデンサC2,C3へ電流が流入するとともに、電圧値V2は時刻t1から徐々に上昇する。時刻t2において、VCUECU8は、メインコンタクタ212pをオン状態とする。時刻t3において、ハイアーム素子225H,226Hのスイッチをオン状態とすると、図3の矢印Bに示される経路で、コンデンサC1,C6,C7,C8,C9に電荷が流入する。VCUECU8は、電流センサ30の取得値に基づいてコンデンサC1に流入する電流I1を一定に保つように制御すると、コンデンサC1の電圧値V1は徐々に上昇する。時刻t4においてコンデンサC1が満充電状態になると、電圧値V1は一定の値に達するとともに電流I1の値もほぼ0となる。充電電流I1の値は予め決めた所定値であってもよく、また環境温度、例えば外気温やヒューズ温度が高くなるほど値が小さくなるように設定されてもよい。
【0050】
このように、第1の実施形態にかかる車両の電源システムによれば、電流センサ30におけるコンデンサC1への充電電流値が一定となるように高電圧DCDCコンバータ22を制御することによって、ヒューズの断線を抑制しつつ、システム起動後のコンタクタの充電を好適に行うことができる。結果として、電気機器を速やかにスタンバイ状態とすることができる。
(【0051】以降は省略されています)

関連特許

本田技研工業株式会社
冷却器
本田技研工業株式会社
車体構造
本田技研工業株式会社
車体構造体
本田技研工業株式会社
充電制御装置
本田技研工業株式会社
車体下部構造
本田技研工業株式会社
車体下部構造
本田技研工業株式会社
車体下部構造
本田技研工業株式会社
衝突軽減装置
本田技研工業株式会社
ダンパー装置
本田技研工業株式会社
レーザ加工機
本田技研工業株式会社
車両駆動装置
本田技研工業株式会社
風向制御装置
本田技研工業株式会社
充電制御装置
本田技研工業株式会社
遊星歯車機構
本田技研工業株式会社
電力変換装置
本田技研工業株式会社
電力変換装置
本田技研工業株式会社
電力変換装置
本田技研工業株式会社
車体後部構造
本田技研工業株式会社
車両制御装置
本田技研工業株式会社
自動運転車両
本田技研工業株式会社
エアセパレータ
本田技研工業株式会社
ベアリング装置
本田技研工業株式会社
ロール搬送装置
本田技研工業株式会社
バッテリパック
本田技研工業株式会社
バッテリパック
本田技研工業株式会社
車体下部構造体
本田技研工業株式会社
車両用ホイール
本田技研工業株式会社
表示装置及び車両
本田技研工業株式会社
車両走行制御装置
本田技研工業株式会社
車両制御システム
本田技研工業株式会社
燃料噴射制御装置
本田技研工業株式会社
搬送台車の誘導路
本田技研工業株式会社
車両制御システム
本田技研工業株式会社
データ公開システム
本田技研工業株式会社
車両の電源システム
本田技研工業株式会社
車両の電源システム
続きを見る